A362548 Number of partitions of n with at least three parts larger than 1.
0, 0, 0, 0, 0, 0, 1, 2, 5, 9, 16, 25, 40, 58, 85, 119, 166, 224, 303, 399, 526, 681, 880, 1122, 1430, 1801, 2266, 2827, 3521, 4354, 5378, 6601, 8092, 9870, 12020, 14576, 17652, 21294, 25653, 30804, 36937, 44162, 52732, 62798, 74690, 88627, 105028, 124201, 146696, 172924, 203600, 239292, 280912
Offset: 0
Keywords
Links
- Eric Weisstein's World of Mathematics, Elder's Theorem
Programs
-
Mathematica
Table[PartitionsP[n]-(1 + Floor[n^2/4]),{n,0,30}]; Table[ Count[Partitions[n], pa_ /; Length[DeleteCases[pa, 1]] > 2] , {n,0,30}]
-
Python
from sympy import npartitions def A362548(n): return npartitions(n)-1-(n**2>>2) # Chai Wah Wu, Apr 27 2023
Comments