This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362555 #38 Mar 02 2024 00:03:37 %S A362555 2,7,28,129,630,3131,15632,78133,390634,1953135,9765636,48828137, %T A362555 244140638,1220703139,6103515640,30517578141,152587890642, %U A362555 762939453143,3814697265644,19073486328145,95367431640646,476837158203147,2384185791015648,11920928955078149,59604644775390650 %N A362555 Number of distinct n-digit suffixes generated by iteratively multiplying an integer by 6, where the initial integer is 1. %H A362555 Paolo Xausa, <a href="/A362555/b362555.txt">Table of n, a(n) for n = 1..1000</a> %H A362555 Wikipedia, <a href="https://en.wikipedia.org/wiki/Multiplicative_order">Multiplicative Order</a> %H A362555 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7,-11,5). %F A362555 a(n) = 5^(n-1) + n. %F A362555 From _Stefano Spezia_, Apr 27 2023: (Start) %F A362555 O.g.f.: (1 - 5*x + 4*x^2 - 4*x^3)/((1 - x)^2*(1 - 5*x)). %F A362555 E.g.f.: (4 + exp(5*x) + 5*exp(x)*x)/4. (End) %e A362555 For n = 2, we begin with 1, iteratively multiply by 6 and count the terms before the last 2 digits begin to repeat. We obtain 1, 6, 36, 216, 1296, 7776, 46656, ... . The next term is 279936, which repeats the last 2 digits 36. Thus, the number of distinct terms is a(2) = 7. %t A362555 A362555[n_]:=5^(n-1)+n;Array[A362555,30] (* _Paolo Xausa_, Nov 18 2023 *) %Y A362555 Cf. A104745, A370557. %Y A362555 Cf. A362468 (with 4 as the multiplier). %K A362555 nonn,base,easy %O A362555 1,1 %A A362555 _Gil Moses_, Apr 24 2023