This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362558 #15 Apr 28 2023 15:46:33 %S A362558 1,1,1,3,2,7,6,15,11,30,27,56,44,101,93,176,149,297,271,490,432,792, %T A362558 744,1255,1109,1958,1849,3010,2764,4565,4287,6842,6328,10143,9673, %U A362558 14883,13853,21637,20717,31185,29343,44583,42609,63261,60100,89134,85893,124754 %N A362558 Number of integer partitions of n without a nonempty initial consecutive subsequence summing to n/2. %C A362558 Also the number of n-multisets of positive integers that (1) have integer median, (2) cover an initial interval, and (3) have weakly decreasing multiplicities. %e A362558 The a(1) = 1 through a(7) = 15 partitions: %e A362558 (1) (2) (3) (4) (5) (6) (7) %e A362558 (21) (31) (32) (42) (43) %e A362558 (111) (41) (51) (52) %e A362558 (221) (222) (61) %e A362558 (311) (411) (322) %e A362558 (2111) (2211) (331) %e A362558 (11111) (421) %e A362558 (511) %e A362558 (2221) %e A362558 (3211) %e A362558 (4111) %e A362558 (22111) %e A362558 (31111) %e A362558 (211111) %e A362558 (1111111) %e A362558 The partition y = (3,2,1,1,1) has nonempty initial consecutive subsequences (3,2,1,1,1), (3,2,1,1), (3,2,1), (3,2), (3), with sums 8, 7, 6, 5, 3. Since 4 is missing, y is counted under a(8). %t A362558 Table[Length[Select[IntegerPartitions[n],!MemberQ[Accumulate[#],n/2]&]],{n,0,15}] %Y A362558 The odd bisection is A058695. %Y A362558 The version for compositions is A213173. %Y A362558 The complement is counted by A322439 aerated. %Y A362558 The even bisection is A362051. %Y A362558 For mean instead of median we have A362559. %Y A362558 A000041 counts integer partitions, strict A000009. %Y A362558 A325347 counts partitions with integer median, complement A307683. %Y A362558 A359893/A359901/A359902 count partitions by median. %Y A362558 Cf. A058398, A108917, A169942, A325676, A353864, A360254, A360672, A360675, A360686, A360687, A362560. %K A362558 nonn %O A362558 0,4 %A A362558 _Gus Wiseman_, Apr 24 2023