This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362560 #6 Apr 29 2023 14:11:45 %S A362560 0,1,1,4,5,8,12,19,25,38,51,70,93,124,162,217,279,360,462,601,750,955, %T A362560 1203,1502,1881,2336,2892,3596,4407,5416,6623,8083,9830,11943,14471, %U A362560 17488,21059,25317,30376,36424,43489,51906,61789,73498,87186,103253,122098 %N A362560 Number of integer partitions of n whose weighted sum is not divisible by n. %C A362560 The (one-based) weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i. This is also the sum of partial sums of the reverse. %C A362560 Conjecture: A partition of n has weighted sum divisible by n iff its reverse has weighted sum divisible by n. %e A362560 The weighted sum of y = (3,3,1) is 1*3+2*3+3*1 = 12, which is not a multiple of 7, so y is counted under a(7). %e A362560 The a(2) = 1 through a(7) = 12 partitions: %e A362560 (11) (21) (22) (32) (33) (43) %e A362560 (31) (41) (42) (52) %e A362560 (211) (221) (51) (61) %e A362560 (1111) (311) (321) (322) %e A362560 (2111) (411) (331) %e A362560 (2211) (421) %e A362560 (21111) (511) %e A362560 (111111) (2221) %e A362560 (4111) %e A362560 (22111) %e A362560 (31111) %e A362560 (211111) %t A362560 Table[Length[Select[IntegerPartitions[n],!Divisible[Total[Accumulate[Reverse[#]]],n]&]],{n,30}] %Y A362560 For median instead of mean we have A322439 aerated, complement A362558. %Y A362560 The complement is counted by A362559. %Y A362560 A000041 counts integer partitions, strict A000009. %Y A362560 A008284/A058398/A327482 count partitions by mean. %Y A362560 A264034 counts partitions by weighted sum. %Y A362560 A304818 = weighted sum of prime indices, row-sums of A359361. %Y A362560 A318283 = weighted sum of reversed prime indices, row-sums of A358136. %Y A362560 Cf. A001227, A051293, A067538, A240219, A261079, A326622, A349156, A360068, A360069, A360241, A362051. %K A362560 nonn %O A362560 1,4 %A A362560 _Gus Wiseman_, Apr 28 2023