This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362566 #29 May 04 2023 06:40:14 %S A362566 0,1,2,6,15,42,77,180,345,806,1457,3276,5985,13462,24257,54060,97665, %T A362566 217686,391937,871596,1570305,3492182,6286337,13972140,25155585, %U A362566 55911766,100642817,223660716,402612225,894735702,1610530817,3578997420,6442287105,14316361046 %N A362566 a(n) is the area of the smallest rectangle that the Harter-Heighway Dragon Curve will fit in after n doublings, starting with a segment of length 1. %C A362566 When constructing this sequence, the rectangles that are considered are those whose sides are parallel to the corresponding links of the dragon curve. %H A362566 Nicolay Avilov, <a href="/A362566/a362566.jpg">Illustration of initial terms</a>. %H A362566 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-3,8,-8,-12,12,-16,16) %F A362566 From _Andrey Zabolotskiy_, _Joerg Arndt_ and _Kevin Ryde_, May 03 2023: (Start) %F A362566 G.f.: x * (1 + x + x^2 + 6*x^3 + 7*x^4 + 2*x^6) / ((1 - x) * (1 - 2*x) * (1 + 2*x) * (1 + x^2) * (1 - 2*x^2) * (1 + 2*x^2)). %F A362566 a(n) = %F A362566 (3*2^n - 5*2^(n/2) + 2) / 2 for n == 0 (mod 2), %F A362566 (5*2^n - 9*2^((n-1)/2) + 2) / 3 for n == 1 (mod 4), %F A362566 (5*2^n - 13*2^((n-1)/2) + 4) / 3 for n == 3 (mod 4). (End) %e A362566 See link: %e A362566 a(3) = 2*3 = 6; %e A362566 a(4) = 3*5 = 15; %e A362566 a(5) = 6*7 = 42. %o A362566 (Python) %o A362566 x1, x2, y1, y2, ex, ey, a = 0, 1, 0, 0, 1, 0, [0] %o A362566 for n in range(40): %o A362566 ex, ey = ex-ey, ey+ex %o A362566 x1r, x2r, y1r, y2r = y1+ex, y2+ex, -x2+ey, -x1+ey %o A362566 x1, x2, y1, y2 = min(x1, x1r), max(x2, x2r), min(y1, y1r), max(y2, y2r) %o A362566 a.append((x2-x1)*(y2-y1)) %o A362566 print(a) # _Andrey Zabolotskiy_, May 03 2023 %Y A362566 Cf. A014577, A341029. %K A362566 nonn,easy %O A362566 0,3 %A A362566 _Nicolay Avilov_, Apr 25 2023 %E A362566 Terms a(16) and beyond and a(0)=0 from _Andrey Zabolotskiy_, Apr 27 2023