cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362568 E.g.f. satisfies A(x) = exp(x/A(x)^x).

This page as a plain text file.
%I A362568 #15 Feb 16 2025 08:34:05
%S A362568 1,1,1,-5,-23,121,1321,-7349,-148175,853777,27840241,-163354949,
%T A362568 -7934320679,46820981065,3203091569497,-18833438286389,
%U A362568 -1742847946697759,10137524365568161,1230956201929018465,-7042544858204663813,-1095864481054115534519
%N A362568 E.g.f. satisfies A(x) = exp(x/A(x)^x).
%H A362568 Seiichi Manyama, <a href="/A362568/b362568.txt">Table of n, a(n) for n = 0..417</a>
%H A362568 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A362568 E.g.f.: (x^2 / LambertW(x^2))^(1/x) = exp(LambertW(x^2) / x) = exp(x * exp(-LambertW(x^2))).
%F A362568 a(n) = n! * Sum_{k=0..floor(n/2)} (-1)^k * (n-k)^k * binomial(n-k-1,k)/(n-k)!.
%F A362568 E.g.f.: Sum_{k>=0} (-k*x + 1)^(k-1) * x^k / k!.
%o A362568 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*exp(-lambertw(x^2)))))
%Y A362568 Cf. A177885, A362569.
%Y A362568 Cf. A361777.
%K A362568 sign
%O A362568 0,4
%A A362568 _Seiichi Manyama_, Apr 25 2023