This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362569 #16 Feb 16 2025 08:34:05 %S A362569 1,1,1,1,-23,-119,-359,6721,78961,450577,-7867439,-160506719, %T A362569 -1421049959,23995634521,745945175977,9197488067041,-152057966904479, %U A362569 -6667968305775839,-107047941299543519,1740437689443523777,102311231044267813321,2043217889363061489961 %N A362569 E.g.f. satisfies A(x) = exp(x/A(x)^(x^2)). %H A362569 Seiichi Manyama, <a href="/A362569/b362569.txt">Table of n, a(n) for n = 0..427</a> %H A362569 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>. %F A362569 E.g.f.: (x^3 / LambertW(x^3))^(1/x^2) = exp(LambertW(x^3) / x^2) = exp(x * exp(-LambertW(x^3))). %F A362569 a(n) = n! * Sum_{k=0..floor(n/3)} (-1)^k * (n-2*k)^k * binomial(n-2*k-1,k)/(n-2*k)!. %F A362569 E.g.f.: Sum_{k>=0} (-k*x^2 + 1)^(k-1) * x^k / k!. %o A362569 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*exp(-lambertw(x^3))))) %Y A362569 Cf. A177885, A362568. %Y A362569 Cf. A362571. %K A362569 sign %O A362569 0,5 %A A362569 _Seiichi Manyama_, Apr 25 2023