cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362569 E.g.f. satisfies A(x) = exp(x/A(x)^(x^2)).

This page as a plain text file.
%I A362569 #16 Feb 16 2025 08:34:05
%S A362569 1,1,1,1,-23,-119,-359,6721,78961,450577,-7867439,-160506719,
%T A362569 -1421049959,23995634521,745945175977,9197488067041,-152057966904479,
%U A362569 -6667968305775839,-107047941299543519,1740437689443523777,102311231044267813321,2043217889363061489961
%N A362569 E.g.f. satisfies A(x) = exp(x/A(x)^(x^2)).
%H A362569 Seiichi Manyama, <a href="/A362569/b362569.txt">Table of n, a(n) for n = 0..427</a>
%H A362569 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A362569 E.g.f.: (x^3 / LambertW(x^3))^(1/x^2) = exp(LambertW(x^3) / x^2) = exp(x * exp(-LambertW(x^3))).
%F A362569 a(n) = n! * Sum_{k=0..floor(n/3)} (-1)^k * (n-2*k)^k * binomial(n-2*k-1,k)/(n-2*k)!.
%F A362569 E.g.f.: Sum_{k>=0} (-k*x^2 + 1)^(k-1) * x^k / k!.
%o A362569 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*exp(-lambertw(x^3)))))
%Y A362569 Cf. A177885, A362568.
%Y A362569 Cf. A362571.
%K A362569 sign
%O A362569 0,5
%A A362569 _Seiichi Manyama_, Apr 25 2023