cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362570 a(n) is the number of isogeny classes of elliptic curves over the finite field of order prime(n).

This page as a plain text file.
%I A362570 #29 Oct 23 2023 08:30:29
%S A362570 5,7,9,11,13,15,17,17,19,21,23,25,25,27,27,29,31,31,33,33,35,35,37,37,
%T A362570 39,41,41,41,41,43,45,45,47,47,49,49,51,51,51,53,53,53,55,55,57,57,59,
%U A362570 59,61,61,61,61,63,63,65,65,65,65,67,67,67,69,71,71,71,71,73,73,75,75,75,75,77
%N A362570 a(n) is the number of isogeny classes of elliptic curves over the finite field of order prime(n).
%C A362570 Two elliptic curves over a finite field F_q are isogenous if and only if they have the same trace of Frobenius, or equivalently, have the same number of points over F_q.
%C A362570 Thus, by the Hasse bound, a(n) is the number of integers with absolute value bounded by 2*sqrt(prime(n)).
%H A362570 Robin Visser, <a href="/A362570/b362570.txt">Table of n, a(n) for n = 1..10000</a>
%H A362570 Max Deuring, <a href="https://doi.org/10.1007/BF02940746">Die Typen der Multiplikatorenringe elliptischer Funktionenkörper</a>, Abh. Math. Sem. Univ. Hamburg 14 (1941), 197-272.
%H A362570 J. H. Silverman, <a href="https://doi.org/10.1007/978-0-387-09494-6">The Arithmetic of Elliptic Curves</a>, Second edition. Graduate Texts in Mathematics, 106. Springer, Dordrecht, 2009.
%F A362570 a(n) = 2*floor(2*sqrt(prime(n))) + 1.
%F A362570 a(n) = 2*A247485(n) - 1.
%e A362570 For n = 1, the a(1) = 5 isogeny classes of elliptic curves are parametrized by the 5 possible values for the trace of Frobenius: -2, -1, 0, 1, 2.
%e A362570 For n = 2, the a(2) = 7 isogeny classes of elliptic curves are parametrized by the 7 possible values for the trace of Frobenius: -3, -2, -1, 0, 1, 2, 3.
%t A362570 2Floor[2Sqrt[Prime[Range[100]]]]+1 (* _Paolo Xausa_, Oct 23 2023 *)
%o A362570 (Magma) [2*Floor(2*Sqrt(p)) + 1 : p in PrimesUpTo(500)];
%o A362570 (PARI) a(n) = 2*sqrtint(4*prime(n)) + 1;
%Y A362570 Cf. A247485, A362198, A362201, A362243, A364681.
%K A362570 nonn
%O A362570 1,1
%A A362570 _Robin Visser_, Apr 25 2023