This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362570 #29 Oct 23 2023 08:30:29 %S A362570 5,7,9,11,13,15,17,17,19,21,23,25,25,27,27,29,31,31,33,33,35,35,37,37, %T A362570 39,41,41,41,41,43,45,45,47,47,49,49,51,51,51,53,53,53,55,55,57,57,59, %U A362570 59,61,61,61,61,63,63,65,65,65,65,67,67,67,69,71,71,71,71,73,73,75,75,75,75,77 %N A362570 a(n) is the number of isogeny classes of elliptic curves over the finite field of order prime(n). %C A362570 Two elliptic curves over a finite field F_q are isogenous if and only if they have the same trace of Frobenius, or equivalently, have the same number of points over F_q. %C A362570 Thus, by the Hasse bound, a(n) is the number of integers with absolute value bounded by 2*sqrt(prime(n)). %H A362570 Robin Visser, <a href="/A362570/b362570.txt">Table of n, a(n) for n = 1..10000</a> %H A362570 Max Deuring, <a href="https://doi.org/10.1007/BF02940746">Die Typen der Multiplikatorenringe elliptischer Funktionenkörper</a>, Abh. Math. Sem. Univ. Hamburg 14 (1941), 197-272. %H A362570 J. H. Silverman, <a href="https://doi.org/10.1007/978-0-387-09494-6">The Arithmetic of Elliptic Curves</a>, Second edition. Graduate Texts in Mathematics, 106. Springer, Dordrecht, 2009. %F A362570 a(n) = 2*floor(2*sqrt(prime(n))) + 1. %F A362570 a(n) = 2*A247485(n) - 1. %e A362570 For n = 1, the a(1) = 5 isogeny classes of elliptic curves are parametrized by the 5 possible values for the trace of Frobenius: -2, -1, 0, 1, 2. %e A362570 For n = 2, the a(2) = 7 isogeny classes of elliptic curves are parametrized by the 7 possible values for the trace of Frobenius: -3, -2, -1, 0, 1, 2, 3. %t A362570 2Floor[2Sqrt[Prime[Range[100]]]]+1 (* _Paolo Xausa_, Oct 23 2023 *) %o A362570 (Magma) [2*Floor(2*Sqrt(p)) + 1 : p in PrimesUpTo(500)]; %o A362570 (PARI) a(n) = 2*sqrtint(4*prime(n)) + 1; %Y A362570 Cf. A247485, A362198, A362201, A362243, A364681. %K A362570 nonn %O A362570 1,1 %A A362570 _Robin Visser_, Apr 25 2023