cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362571 E.g.f. satisfies A(x) = exp(x * A(x)^(x^2)).

This page as a plain text file.
%I A362571 #20 Feb 16 2025 08:34:05
%S A362571 1,1,1,1,25,121,361,8401,82321,456625,11496241,172149121,1452983401,
%T A362571 40947003241,823437038425,9491714865361,300842942443681,
%U A362571 7568303382376801,111494036396244961,3957438528527140225,119206427681076135481,2147109997071581380441
%N A362571 E.g.f. satisfies A(x) = exp(x * A(x)^(x^2)).
%H A362571 Seiichi Manyama, <a href="/A362571/b362571.txt">Table of n, a(n) for n = 0..427</a>
%H A362571 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A362571 E.g.f.: (-LambertW(-x^3) / x^3)^(1/x^2) = exp(-LambertW(-x^3) / x^2) = exp(x * exp(-LambertW(-x^3))).
%F A362571 a(n) = n! * Sum_{k=0..floor(n/3)} (n-2*k)^k * binomial(n-2*k-1,k)/(n-2*k)!.
%F A362571 E.g.f.: Sum_{k>=0} (k*x^2 + 1)^(k-1) * x^k / k!.
%o A362571 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*exp(-lambertw(-x^3)))))
%Y A362571 Cf. A000272, A361777.
%Y A362571 Cf. A362569, A362573.
%K A362571 nonn
%O A362571 0,5
%A A362571 _Seiichi Manyama_, Apr 25 2023