cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362573 E.g.f. satisfies A(x) = exp(x * A(x)^(x^2/6)).

This page as a plain text file.
%I A362573 #21 Feb 16 2025 08:34:05
%S A362573 1,1,1,1,5,21,61,351,2521,13105,96041,933021,7098301,65348141,
%T A362573 787190405,7896243811,88712631281,1269172794401,15784837036561,
%U A362573 210688183375705,3486485630182581,51674172769168741,801474314335394701,15059801657898920231,258815184609843935305
%N A362573 E.g.f. satisfies A(x) = exp(x * A(x)^(x^2/6)).
%H A362573 Seiichi Manyama, <a href="/A362573/b362573.txt">Table of n, a(n) for n = 0..470</a>
%H A362573 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A362573 E.g.f.: (-6 * LambertW(-x^3/6) / x^3)^(6/x^2) = exp(-6 * LambertW(-x^3/6) / x^2) = exp(x * exp(-LambertW(-x^3/6))).
%F A362573 a(n) = n! * Sum_{k=0..floor(n/3)} ((n-2*k)/6)^k * binomial(n-2*k-1,k)/(n-2*k)!.
%F A362573 E.g.f.: Sum_{k>=0} (k*x^2/6 + 1)^(k-1) * x^k / k!.
%o A362573 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*exp(-lambertw(-x^3/6)))))
%Y A362573 Cf. A000272, A362572.
%Y A362573 Cf. A362571.
%K A362573 nonn
%O A362573 0,5
%A A362573 _Seiichi Manyama_, Apr 25 2023