This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362573 #21 Feb 16 2025 08:34:05 %S A362573 1,1,1,1,5,21,61,351,2521,13105,96041,933021,7098301,65348141, %T A362573 787190405,7896243811,88712631281,1269172794401,15784837036561, %U A362573 210688183375705,3486485630182581,51674172769168741,801474314335394701,15059801657898920231,258815184609843935305 %N A362573 E.g.f. satisfies A(x) = exp(x * A(x)^(x^2/6)). %H A362573 Seiichi Manyama, <a href="/A362573/b362573.txt">Table of n, a(n) for n = 0..470</a> %H A362573 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>. %F A362573 E.g.f.: (-6 * LambertW(-x^3/6) / x^3)^(6/x^2) = exp(-6 * LambertW(-x^3/6) / x^2) = exp(x * exp(-LambertW(-x^3/6))). %F A362573 a(n) = n! * Sum_{k=0..floor(n/3)} ((n-2*k)/6)^k * binomial(n-2*k-1,k)/(n-2*k)!. %F A362573 E.g.f.: Sum_{k>=0} (k*x^2/6 + 1)^(k-1) * x^k / k!. %o A362573 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*exp(-lambertw(-x^3/6))))) %Y A362573 Cf. A000272, A362572. %Y A362573 Cf. A362571. %K A362573 nonn %O A362573 0,5 %A A362573 _Seiichi Manyama_, Apr 25 2023