cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362576 Number of vertex cuts in the n X n rook complement graph.

This page as a plain text file.
%I A362576 #12 Feb 16 2025 08:34:05
%S A362576 0,9,114,908,5985,35505,196602,1036992,5277357,26134385,126677826,
%T A362576 603492444,2834183937,13150592889,60391598610,274863240992,
%U A362576 1241212143357,5566202141193,24807561785514,109950785325900,484883791129185,2128652665933409,9306262365861834
%N A362576 Number of vertex cuts in the n X n rook complement graph.
%H A362576 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RookComplementGraph.html">Rook Complement Graph</a>
%H A362576 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/VertexCut.html">Vertex Cut</a>
%F A362576 From _Andrew Howroyd_, Apr 30 2023: (Start)
%F A362576 a(n) = 2*n*(2^n-n-1) + n^2*(2^(n-1)-1)^2 + binomial(n,2)^2.
%F A362576 a(n) = 2^(n^2) - 1 - A291593(n). (End)
%Y A362576 Cf. A291593, A362575.
%K A362576 nonn
%O A362576 1,2
%A A362576 _Eric W. Weisstein_, Apr 25 2023
%E A362576 a(2) corrected and terms a(6) and beyond from _Andrew Howroyd_, Apr 30 2023