cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362578 Prime numbers followed by two consecutive numbers which are products of four distinct primes (or tetraprimes).

This page as a plain text file.
%I A362578 #16 Jun 19 2023 10:45:41
%S A362578 8293,16553,17389,18289,22153,26893,29209,33409,35509,36293,39233,
%T A362578 39829,40493,41809,45589,48109,58393,59629,59753,59981,60493,60913,
%U A362578 64013,64921,65713,66169,69221,71329,74093,75577,75853,77689,77933,79393,79609,82913,84533,85853,87589,87701,88681
%N A362578 Prime numbers followed by two consecutive numbers which are products of four distinct primes (or tetraprimes).
%e A362578 8293 (prime), 8294 = 2*11*13*29 and 8295 = 3*5*7*79.
%e A362578 16553 (prime), 16554 = 2*3*31*89 and 16555 = 5*7*11*43.
%e A362578 17389 (prime), 17390 = 2*5*37*47 and 17391 = 3*11*17*31.
%t A362578 q[n_] := FactorInteger[n][[;; , 2]] == {1, 1, 1, 1}; Select[Prime[Range[10^4]], AllTrue[# + {1, 2}, q] &] (* _Amiram Eldar_, Apr 25 2023 *)
%o A362578 (PARI) is(n) = (omega(n)==4) && (bigomega(n)==4); \\ A046386
%o A362578 isok(p) = isprime(p) && is(p+1) && is(p+2); \\ _Michel Marcus_, Apr 25 2023
%Y A362578 Cf. A000040, A046386, A140078 and A361796.
%K A362578 nonn
%O A362578 1,1
%A A362578 _Massimo Kofler_, Apr 25 2023