This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362579 #37 Apr 23 2024 07:33:19 %S A362579 1,3,5,6,9,10,11,12,13,15,21,24,25,27,30,33,36,37,41,44,45,48,50,52, %T A362579 55,60,72,73,75,77,84,88,90,91,96,99,100,101,110,111,120,123,125,130, %U A362579 135,137,143,144,150,159,165,205,208,210,216,225,231,237,239,240,250,259,264,270,271,273,275,288 %N A362579 Numbers k such that the decimal expansion of 1/k does not contain the digit 5. %C A362579 If k is a term, then so is 10*k. %H A362579 Chai Wah Wu, <a href="/A362579/b362579.txt">Table of n, a(n) for n = 1..2692</a> (n = 1..1000 from Robert Israel) %e A362579 a(8) = 12 is a term because 1/12 = 0.08333... does not contain the digit 5. %p A362579 filter:= proc(n) local q; %p A362579 q:= NumberTheory:-RepeatingDecimal(1/n); %p A362579 not(member(5,RepeatingPart(q)) or member(5, NonRepeatingPart(q))) %p A362579 end proc: %p A362579 select(filter, [$1..300]); %t A362579 Select[Range[500], FreeQ[First[RealDigits[1/#]], 5] &] (* _Paolo Xausa_, Apr 23 2024 *) %o A362579 (Python) %o A362579 from itertools import count, islice %o A362579 from sympy import multiplicity, n_order %o A362579 def A362579_gen(startvalue=1): # generator of terms >= startvalue %o A362579 for a in count(max(startvalue,1)): %o A362579 m2, m5 = (~a&a-1).bit_length(), multiplicity(5,a) %o A362579 k, m = 10**max(m2,m5), 10**n_order(10,a//(1<<m2)//5**m5)-1 %o A362579 if not('5' in str(c:=k//a) or '5' in str(m*k//a-c*m)): %o A362579 yield a %o A362579 A362579_list = list(islice(A362579_gen(),20)) # _Chai Wah Wu_, May 01 2023 %Y A362579 Complement of A353441. %K A362579 nonn,base %O A362579 1,2 %A A362579 _Robert Israel_, Apr 25 2023