cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A353441 Integers m such that the decimal expansion of 1/m contains the digit 5.

Original entry on oeis.org

2, 4, 7, 8, 14, 16, 17, 18, 19, 20, 22, 23, 26, 28, 29, 31, 32, 34, 35, 38, 39, 40, 42, 43, 46, 47, 49, 51, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 74, 76, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 92, 93, 94, 95, 97, 98, 102, 103, 104, 105, 106, 107, 108, 109
Offset: 1

Views

Author

Keywords

Comments

If m is a term, 10*m is also a term, so terms with no trailing zeros are all primitive terms.

Examples

			m = 7 is a term since 1/7 = 0.142857142857...
m = 22 is a term since 1/22 = 0.04545454545... (here, 5 is the largest digit).
m = 132 is a term since 1/693 = 0.00757575... (here, 5 is the smallest digit).
		

Crossrefs

A351471 (largest digit=5) and A352159 (smallest digit=5) are subsequences.
Similar with digit k: A352154 (k=0), A353437 (k=1), A353438 (k=2), A353439 (k=3), A353440 (k=4), this sequence (k=5), A353442 (k=6), A353443 (k=7), A353444 (k=8), A333237 (k=9).
Complement of A362579.

Programs

  • Maple
    filter:= proc(n) local q;
      q:= NumberTheory:-RepeatingDecimal(1/n);
      member(5,RepeatingPart(q)) or member(5, NonRepeatingPart(q))
    end proc:
    select(filter, [$1..200]); # Robert Israel, Apr 25 2023
  • Mathematica
    f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[ Range@ 125, MemberQ[f@#, 5] &]
  • Python
    from itertools import count, islice
    from sympy import multiplicity, n_order
    def A353441_gen(startvalue=1): # generator of terms >= startvalue
        for a in count(max(startvalue,1)):
            m2, m5 = (~a&a-1).bit_length(), multiplicity(5,a)
            k, m = 10**max(m2,m5), 10**n_order(10,a//(1<A353441_list = list(islice(A353441_gen(),20)) # Chai Wah Wu, May 01 2023

A362710 Numbers m such that the decimal expansion of 1/m contains no digit 0, ignoring leading and trailing 0's.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 22, 24, 25, 26, 28, 30, 32, 35, 36, 40, 44, 45, 50, 54, 55, 56, 60, 64, 65, 66, 70, 72, 74, 75, 80, 82, 88, 90, 100, 104, 108, 112, 120, 125, 128, 132, 140, 144, 148, 150, 160, 175, 176, 180, 200, 216, 220, 224, 225, 240, 250, 252, 260, 264
Offset: 1

Views

Author

Robert Israel, Apr 30 2023

Keywords

Comments

If k is a term, then so is 10*k.

Examples

			a(12) = 14 is a term because 1/14 = 0.0714285714... contains no digit 0 except for leading 0's.
		

Crossrefs

Complement of A352154. Cf. A362579.

Programs

  • Maple
    removeInitial0:= proc(L) local i;
      for i from 1 to nops(L) do if L[i] <> 0 then return L[i..-1] fi od;
      []
    end proc:
    filter:= proc(n) local q;
      q:= NumberTheory:-RepeatingDecimal(1/n);
      not(member(0, removeInitial0(NonRepeatingPart(q))) or member(0, RepeatingPart(q)))
    end proc:
    select(filter, [$1..300]);
  • Mathematica
    Select[Range[500], FreeQ[First[RealDigits[1/#]], 0] &] (* Paolo Xausa, Apr 22 2024 *)
  • Python
    from itertools import count, islice
    from sympy import multiplicity, n_order
    def A362710_gen(startvalue=1): # generator of terms >= startvalue
        for a in count(max(startvalue,1)):
            m2, m5 = (~a&a-1).bit_length(), multiplicity(5,a)
            k, m = 10**max(m2,m5), 10**(t:=n_order(10,a//(1<A362710_list = list(islice(A362710_gen(),30)) # Chai Wah Wu, May 04 2023
Showing 1-2 of 2 results.