cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362582 Triangular array read by rows. T(n,k) is the number of alternating permutations of [2n+1] having exactly 2k elements to the left of 1, n >= 0, 0 <= k <= n.

This page as a plain text file.
%I A362582 #22 Apr 27 2023 11:47:35
%S A362582 1,1,1,5,6,5,61,75,75,61,1385,1708,1750,1708,1385,50521,62325,64050,
%T A362582 64050,62325,50521,2702765,3334386,3427875,3438204,3427875,3334386,
%U A362582 2702765,199360981,245951615,252857605,253708455,253708455,252857605,245951615,199360981
%N A362582 Triangular array read by rows.  T(n,k) is the number of alternating permutations of [2n+1] having exactly 2k elements to the left of 1, n >= 0, 0 <= k <= n.
%C A362582 Here, w = w_1,w_2,...,w_(2n+1) is an alternating permutation if w_1 < w_2 > w_3 < ... < w_(2n) > w_(2n+1).
%H A362582 Alois P. Heinz, <a href="/A362582/b362582.txt">Rows n = 0..140, flattened</a>
%F A362582 Sum_{n>=0} Sum_{k=0..n} T(n,k)*u^k*z^n/A000680(n) = 1/(E(-u*z)*E(-z)) where E(z) = Sum_{n>=0} z^n/A000680(n).
%F A362582 T(n,k) = binomial(2*n,2*k)*A000111(2*k)*A000111(2*(n-k)). - _Alois P. Heinz_, Apr 25 2023
%e A362582 T(2,1) = 6 because we have: {2, 3, 1, 5, 4}, {2, 4, 1, 5, 3}, {2, 5, 1, 4, 3}, {3, 4, 1, 5, 2}, {3, 5, 1, 4, 2}, {4, 5, 1, 3, 2}.
%e A362582 Triangle begins
%e A362582      1;
%e A362582      1,     1;
%e A362582      5,     6,     5;
%e A362582     61,    75,    75,    61;
%e A362582   1385,  1708,  1750,  1708,  1385;
%e A362582  50521, 62325, 64050, 64050, 62325, 50521;
%e A362582  ...
%p A362582 b:= proc(u, o) option remember; `if`(u+o=0, 1,
%p A362582       add(b(o-1+j, u-j), j=1..u))
%p A362582     end:
%p A362582 T:= (n, k)-> binomial(2*n, 2*k)*b(2*k, 0)*b(2*(n-k), 0):
%p A362582 seq(seq(T(n, k), k=0..n), n=0..8);  # _Alois P. Heinz_, Apr 25 2023
%t A362582 nn = 6; B[n_] := (2 n)!/2^n; e[z_] := Sum[z^n/B[n], {n, 0, nn}]; Map[Select[#, # > 0 &] &,Table[B[n], {n, 0, nn}] CoefficientList[Series[1/e[-u z]*1/e[-z], {z, 0, nn}], {z, u}]] // Grid
%Y A362582 Cf. A000182 (row sums), A000364 (column k=0), A000680.
%Y A362582 Cf. A000111, A104345.
%K A362582 nonn,tabl
%O A362582 0,4
%A A362582 _Geoffrey Critzer_, Apr 25 2023