This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362585 #11 May 10 2023 11:50:26 %S A362585 1,1,1,3,6,3,13,39,39,13,75,300,450,300,75,541,2705,5410,5410,2705, %T A362585 541,4683,28098,70245,93660,70245,28098,4683,47293,331051,993153, %U A362585 1655255,1655255,993153,331051,47293,545835,4366680,15283380,30566760,38208450,30566760,15283380,4366680,545835 %N A362585 Triangle read by rows, T(n, k) = A000670(n) * binomial(n, k). %e A362585 [0] 1; %e A362585 [1] 1, 1; %e A362585 [2] 3, 6, 3; %e A362585 [3] 13, 39, 39, 13; %e A362585 [4] 75, 300, 450, 300, 75; %e A362585 [5] 541, 2705, 5410, 5410, 2705, 541; %e A362585 [6] 4683, 28098, 70245, 93660, 70245, 28098, 4683; %o A362585 (SageMath) %o A362585 def TransOrdPart(m, n) -> list[int]: %o A362585 @cached_function %o A362585 def P(m: int, n: int): %o A362585 R = PolynomialRing(ZZ, "x") %o A362585 if n == 0: return R(1) %o A362585 return R(sum(binomial(m * n, m * k) * P(m, n - k) * x %o A362585 for k in range(1, n + 1))) %o A362585 T = P(m, n) %o A362585 def C(k) -> int: %o A362585 return sum(T[j] * binomial(n, k) for j in range(n + 1)) %o A362585 return [C(k) for k in range(n+1)] %o A362585 def A362585(n) -> list[int]: return TransOrdPart(1, n) %o A362585 for n in range(6): print(A362585(n)) %Y A362585 Family of triangles: A055372 (m=0, Pascal), this sequence (m=1, Fubini), A362586 (m=2, Joffe), A362849 (m=3, A278073). %Y A362585 Cf. A000670 (column 0 and main diagonal), A216794 (row sums). %K A362585 nonn,tabl %O A362585 0,4 %A A362585 _Peter Luschny_, Apr 26 2023