cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362589 Triangular array read by rows. T(n,k) is the number of ways to form an ordered pair of n-permutations and then choose a size k subset of its common descent set, n >= 0, 0 <= k <= max{0,n-1}.

This page as a plain text file.
%I A362589 #75 May 02 2023 09:01:37
%S A362589 1,1,4,1,36,18,1,576,432,68,1,14400,14400,3900,250,1,518400,648000,
%T A362589 252000,32400,922,1,25401600,38102400,19404000,3880800,262542,3430,1,
%U A362589 1625702400,2844979200,1795046400,493920000,56664384,2119152,12868,1
%N A362589 Triangular array read by rows.  T(n,k) is the number of ways to form an ordered pair of n-permutations and then choose a size k subset of its common descent set, n >= 0, 0 <= k <= max{0,n-1}.
%H A362589 L. Carlitz, R. Scoville and T. Vaughan, <a href="https://doi.org/10.1090/S0002-9904-1974-13554-8">Enumeration of pairs of permutations and sequences</a>, Bull. Amer. Math. Soc., 80 (1974), 881-884.
%F A362589 Sum_{n>=0} Sum_{k=0..n-1} T(n,k)*u^k*z^n/(n!)^2 = u/(u + 1 - E(u*z)) where E(z) = Sum_{n>=0} z^n/(n!)^2.
%F A362589 Column k=1: Sum_{k=1..n-1} A192721(n,k)*k gives total number of common descents over all permutation pairs.
%e A362589 Triangle begins:
%e A362589      1;
%e A362589      1;
%e A362589      4,     1;
%e A362589     36,    18,    1;
%e A362589    576,   432,   68,   1;
%e A362589  14400, 14400, 3900, 250, 1;
%e A362589  ...
%t A362589 nn = 8; B[n_] := n!^2; e[z_] := Sum[z^n/B[n], {n, 0, nn}];Map[Select[#, # > 0 &] &,Table[B[n], {n, 0, nn}] CoefficientList[Series[u/(u + 1 - e[u z]), {z, 0, nn}], {z, u}]] // Flatten
%Y A362589 Cf. A001044 (column k=0), A102221 (row sums), A192721.
%K A362589 nonn,tabf
%O A362589 0,3
%A A362589 _Geoffrey Critzer_, May 01 2023