cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362601 Domination number for pawns' graph P(n).

This page as a plain text file.
%I A362601 #77 Jul 02 2023 12:41:21
%S A362601 1,2,5,8,12,16,23,28,33,44,49,56,70,78,85,104,111,120,141,152,161,188,
%T A362601 197,208,237,250,261,296,307,320,357,372,385,428,441,456,501,518,533,
%U A362601 584
%N A362601 Domination number for pawns' graph P(n).
%C A362601 Minimum number of white pawns needed to occupy or attack all squares of an n X n chessboard.
%C A362601 Solutions for boards of sizes 1 to 8, 10, 14, 15 from _Rodolfo Kurchan_.
%C A362601 Solutions for boards of sizes 9, 11, 12, 14 to 18, 20 to 24 from Michael Steinau.
%C A362601 Solution for boards of size 13 and 25 to 40 from M. Achterberg.
%H A362601 M. Achterberg, <a href="/A362601/a362601.png">Illustration for a(13) = 70</a>.
%H A362601 Rodolfo Kurchan, <a href="https://www.puzzlefun.online/chess-puzzle-fun-06">Board domination problem</a>, Chess Puzzle Fun 6, April 2023.
%e A362601 a(8) = 28 white pawns occupying or attacking all squares of a standard chessboard:
%e A362601   . . . . . . . .
%e A362601   . P P P P P P .
%e A362601   . P . . . . P .
%e A362601   . P . P P . P .
%e A362601   . P . . . . P .
%e A362601   . P . P P . P .
%e A362601   . P . . . . P .
%e A362601   P P P P P P P P
%Y A362601 Cf. A075458.
%K A362601 nonn,more
%O A362601 1,2
%A A362601 _Rodolfo Kurchan_, Jun 18 2023