This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362607 #31 May 05 2024 14:32:18 %S A362607 0,0,0,1,1,2,4,4,6,9,13,13,23,23,33,45,56,64,90,101,137,169,208,246, %T A362607 320,379,469,567,702,828,1035,1215,1488,1772,2139,2533,3076,3612,4333, %U A362607 5117,6113,7168,8557,10003,11862,13899,16385,19109,22525,26198,30729,35736 %N A362607 Number of integer partitions of n with more than one mode. %C A362607 A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}. %H A362607 Alois P. Heinz, <a href="/A362607/b362607.txt">Table of n, a(n) for n = 0..2000</a> (first 301 terms from John Tyler Rascoe) %F A362607 G.f.: Sum_{u>0} A(u,x) where A(u,x) = Sum_{i>0} Sum_{j>u} ( x^(i*(u+j))*(1-x^u)*(1-x^j) )/( (1-x^(u*i))*(1-x^(j*i)) ) * Product_{k>0} ( (1-x^(k*(i+[k>j])))/(1-x^k) ) is the g.f. for partitions of this kind with least mode u and [] is the Iverson bracket. - _John Tyler Rascoe_, Apr 05 2024 %e A362607 The partition (3,2,2,1,1) has greatest multiplicity 2, and two parts of multiplicity 2 (namely 1 and 2), so is counted under a(9). %e A362607 The a(3) = 1 through a(9) = 9 partitions: %e A362607 (21) (31) (32) (42) (43) (53) (54) %e A362607 (41) (51) (52) (62) (63) %e A362607 (321) (61) (71) (72) %e A362607 (2211) (421) (431) (81) %e A362607 (521) (432) %e A362607 (3311) (531) %e A362607 (621) %e A362607 (32211) %e A362607 (222111) %p A362607 b:= proc(n, i, m, t) option remember; `if`(n=0, `if`(t=2, 1, 0), `if`(i<1, 0, %p A362607 add(b(n-i*j, i-1, max(j, m), `if`(j>m, 1, `if`(j=m, 2, t))), j=0..n/i))) %p A362607 end: %p A362607 a:= n-> b(n$2, 0$2): %p A362607 seq(a(n), n=0..51); # _Alois P. Heinz_, May 05 2024 %t A362607 Table[Length[Select[IntegerPartitions[n],Length[Commonest[#]]>1&]],{n,0,30}] %o A362607 (PARI) %o A362607 G_x(N)={my(x='x+O('x^(N-1)), Ib(k,j) = if(k>j,1,0), A_x(u)=sum(i=1,N-u, sum(j=u+1, N-u, (x^(i*(u+j))*(1-x^u)*(1-x^j))/((1-x^(u*i))*(1-x^(j*i))) * prod(k=1,N-i*(u+j), (1-x^(k*(i+Ib(k,j))))/(1-x^k))))); %o A362607 concat([0,0,0],Vec(sum(u=1,N, A_x(u))))} %o A362607 G_x(51) \\ _John Tyler Rascoe_, Apr 05 2024 %Y A362607 For parts instead of multiplicities we have A002865. %Y A362607 For median instead of mode we have A238479, complement A238478. %Y A362607 These partitions have ranks A362605. %Y A362607 The complement is counted by A362608, ranks A356862. %Y A362607 For co-mode we have A362609, ranks A362606. %Y A362607 For co-mode complement we have A362610, ranks A359178. %Y A362607 A000041 counts integer partitions. %Y A362607 A359893 counts partitions by median. %Y A362607 A362611 counts modes in prime factorization, co-modes A362613. %Y A362607 A362614 counts partitions by number of modes, co-modes A362615. %Y A362607 Cf. A008284, A098859, A237984, A275870, A304442, A327472, A353864, A353865, A360071, A362612. %K A362607 nonn %O A362607 0,6 %A A362607 _Gus Wiseman_, Apr 30 2023