This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362609 #7 May 02 2023 16:08:00 %S A362609 0,0,0,1,1,2,4,5,9,14,19,26,42,51,74,103,136,174,246,303,411,523,674, %T A362609 844,1114,1364,1748,2174,2738,3354,4247,5139,6413,7813,9613,11630, %U A362609 14328,17169,20958,25180,30497,36401,44025,52285,62834,74626,89111,105374,125662 %N A362609 Number of integer partitions of n with more than one part of least multiplicity. %C A362609 These are partitions where no part appears fewer times than all of the others. %e A362609 The partition (4,2,2,1) has least multiplicity 1, and two parts of multiplicity 1 (namely 1 and 4), so is counted under a(9). %e A362609 The a(3) = 1 through a(9) = 14 partitions: %e A362609 (21) (31) (32) (42) (43) (53) (54) %e A362609 (41) (51) (52) (62) (63) %e A362609 (321) (61) (71) (72) %e A362609 (2211) (421) (431) (81) %e A362609 (3211) (521) (432) %e A362609 (3221) (531) %e A362609 (3311) (621) %e A362609 (4211) (3321) %e A362609 (32111) (4221) %e A362609 (4311) %e A362609 (5211) %e A362609 (42111) %e A362609 (222111) %e A362609 (321111) %t A362609 Table[Length[Select[IntegerPartitions[n],Count[Length/@Split[#],Min@@Length/@Split[#]]>1&]],{n,0,30}] %Y A362609 For parts instead of multiplicities we have A117989, ranks A283050. %Y A362609 For median instead of co-mode we have A238479, complement A238478. %Y A362609 These partitions have ranks A362606. %Y A362609 For mode instead of co-mode we have A362607, ranks A362605. %Y A362609 For mode complement instead of co-mode we have A362608, ranks A356862. %Y A362609 The complement is counted by A362610, ranks A359178. %Y A362609 A000041 counts integer partitions. %Y A362609 A275870 counts collapsible partitions. %Y A362609 A359893 counts partitions by median. %Y A362609 A362611 counts modes in prime factorization, co-modes A362613. %Y A362609 A362614 counts partitions by number of modes, co-modes A362615. %Y A362609 Cf. A002865, A008284, A053263, A098859, A304442, A353864, A360071, A362612. %K A362609 nonn %O A362609 0,6 %A A362609 _Gus Wiseman_, Apr 30 2023