cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362610 Number of integer partitions of n having a unique part of least multiplicity.

This page as a plain text file.
%I A362610 #14 May 04 2023 14:57:22
%S A362610 0,1,2,2,4,5,7,10,13,16,23,30,35,50,61,73,95,123,139,187,216,269,328,
%T A362610 411,461,594,688,836,980,1211,1357,1703,1936,2330,2697,3253,3649,4468,
%U A362610 5057,6005,6841,8182,9149,10976,12341,14508,16447,19380,21611,25553,28628
%N A362610 Number of integer partitions of n having a unique part of least multiplicity.
%C A362610 Alternatively, these are partitions with a part appearing fewer times than each of the others.
%H A362610 Andrew Howroyd, <a href="/A362610/b362610.txt">Table of n, a(n) for n = 0..1000</a>
%F A362610 G.f.: Sum_{m>=2} (Sum_{j>=1} x^(j*(m-1))/(1 + x^(j*m)/(1 - x^j))) * (Product_{j>=1} (1 + x^(j*m)/(1 - x^j))). - _Andrew Howroyd_, May 04 2023
%e A362610 The partition (3,3,2,2,2,1,1,1) has least multiplicity 2, and only one part of multiplicity 2 (namely 3), so is counted under a(15).
%e A362610 The a(1) = 1 through a(8) = 13 partitions:
%e A362610   (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
%e A362610        (11)  (111)  (22)    (221)    (33)      (322)      (44)
%e A362610                     (211)   (311)    (222)     (331)      (332)
%e A362610                     (1111)  (2111)   (411)     (511)      (422)
%e A362610                             (11111)  (3111)    (2221)     (611)
%e A362610                                      (21111)   (4111)     (2222)
%e A362610                                      (111111)  (22111)    (5111)
%e A362610                                                (31111)    (22211)
%e A362610                                                (211111)   (41111)
%e A362610                                                (1111111)  (221111)
%e A362610                                                           (311111)
%e A362610                                                           (2111111)
%e A362610                                                           (11111111)
%t A362610 Table[Length[Select[IntegerPartitions[n],Count[Length/@Split[#],Min@@Length/@Split[#]]==1&]],{n,0,30}]
%o A362610 (PARI) seq(n) = my(A=O(x*x^n)); Vec(sum(m=2, n+1, sum(j=1, n, x^(j*(m-1))/(1 + if(j*m<=n, x^(j*m)/(1-x^j) )) + A)*prod(j=1, n\m, 1 + x^(j*m)/(1 - x^j) + A)), -(n+1)) \\ _Andrew Howroyd_, May 04 2023
%Y A362610 For parts instead of multiplicities we have A002865, ranks A247180.
%Y A362610 For median instead of co-mode we have A238478, complement A238479.
%Y A362610 These partitions have ranks A359178.
%Y A362610 For mode complement of co-mode we have A362607, ranks A362605.
%Y A362610 For mode instead of co-mode we have A362608, ranks A356862.
%Y A362610 The complement is counted by A362609, ranks A362606.
%Y A362610 A000041 counts integer partitions.
%Y A362610 A275870 counts collapsible partitions.
%Y A362610 A359893 counts partitions by median.
%Y A362610 A362611 counts modes in prime factorization, co-modes A362613.
%Y A362610 A362614 counts partitions by number of modes, co-modes A362615.
%Y A362610 Cf. A008284, A053263, A098859, A237984, A240219, A304442, A327472, A353863, A353864, A353865, A362612.
%K A362610 nonn
%O A362610 0,3
%A A362610 _Gus Wiseman_, Apr 30 2023