This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362612 #13 Apr 03 2024 21:21:53 %S A362612 0,1,2,2,3,3,4,4,6,6,7,9,10,12,15,16,19,23,26,32,37,41,48,58,65,75,88, %T A362612 101,115,135,151,176,200,228,261,300,336,385,439,498,561,641,717,818, %U A362612 921,1036,1166,1321,1477,1667,1867,2099,2346,2640,2944,3303,3684 %N A362612 Number of integer partitions of n such that the greatest part is the unique mode. %C A362612 A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}. %H A362612 John Tyler Rascoe, <a href="/A362612/b362612.txt">Table of n, a(n) for n = 0..500</a> %F A362612 G.f.: Sum_{i, j>0} x^(i*j) * Product_{k=1,i-1} ((1-x^(j*k))/(1-x^k)). - _John Tyler Rascoe_, Apr 03 2024 %e A362612 The a(1) = 1 through a(10) = 7 partitions (A = 10): %e A362612 1 2 3 4 5 6 7 8 9 A %e A362612 11 111 22 221 33 331 44 333 55 %e A362612 1111 11111 222 2221 332 441 442 %e A362612 111111 1111111 2222 3321 3331 %e A362612 22211 22221 22222 %e A362612 11111111 111111111 222211 %e A362612 1111111111 %t A362612 Table[Length[Select[IntegerPartitions[n],Commonest[#]=={Max[#]}&]],{n,0,30}] %o A362612 (PARI) %o A362612 A_x(N)={my(x='x+O('x^N), g=sum(i=1, N, sum(j=1, N/i, x^(i*j)*prod(k=1,i-1,(1-x^(j*k))/(1-x^k))))); concat([0],Vec(g))} %o A362612 A_x(60) \\ _John Tyler Rascoe_, Apr 03 2024 %Y A362612 For median instead of mode we have A053263, complement A237821. %Y A362612 These partitions have ranks A362616. %Y A362612 A000041 counts integer partitions. %Y A362612 A275870 counts collapsible partitions. %Y A362612 A359893 counts partitions by median. %Y A362612 A362607 counts partitions with more than one mode, ranks A362605. %Y A362612 A362608 counts partitions with a unique mode, ranks A356862. %Y A362612 A362611 counts modes in prime factorization. %Y A362612 A362614 counts partitions by number of modes, co-modes A362615. %Y A362612 Cf. A002865, A008284, A070003, A098859, A102750, A237984, A238478, A238479, A327472, A362609, A362610. %K A362612 nonn %O A362612 0,3 %A A362612 _Gus Wiseman_, May 03 2023