cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362614 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k modes.

This page as a plain text file.
%I A362614 #20 May 05 2024 16:42:18
%S A362614 1,0,1,0,2,0,2,1,0,4,1,0,5,2,0,7,3,1,0,11,3,1,0,16,4,2,0,21,6,3,0,29,
%T A362614 8,4,1,0,43,7,5,1,0,54,13,8,2,0,78,12,8,3,0,102,17,11,5,0,131,26,12,6,
%U A362614 1,0,175,29,17,9,1,0,233,33,18,11,2,0,295,47,25
%N A362614 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k modes.
%C A362614 A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.
%H A362614 Alois P. Heinz, <a href="/A362614/b362614.txt">Rows n = 0..800, flattened</a>
%F A362614 Sum_{k=0..A003056(n)} k * T(n,k) = A372542. - _Alois P. Heinz_, May 05 2024
%e A362614 Triangle begins:
%e A362614    1
%e A362614    0   1
%e A362614    0   2
%e A362614    0   2   1
%e A362614    0   4   1
%e A362614    0   5   2
%e A362614    0   7   3   1
%e A362614    0  11   3   1
%e A362614    0  16   4   2
%e A362614    0  21   6   3
%e A362614    0  29   8   4   1
%e A362614    0  43   7   5   1
%e A362614    0  54  13   8   2
%e A362614    0  78  12   8   3
%e A362614    0 102  17  11   5
%e A362614    0 131  26  12   6   1
%e A362614    0 175  29  17   9   1
%e A362614 Row n = 8 counts the following partitions:
%e A362614   (8)         (53)    (431)
%e A362614   (44)        (62)    (521)
%e A362614   (332)       (71)
%e A362614   (422)       (3311)
%e A362614   (611)
%e A362614   (2222)
%e A362614   (3221)
%e A362614   (4211)
%e A362614   (5111)
%e A362614   (22211)
%e A362614   (32111)
%e A362614   (41111)
%e A362614   (221111)
%e A362614   (311111)
%e A362614   (2111111)
%e A362614   (11111111)
%t A362614 msi[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
%t A362614 Table[Length[Select[IntegerPartitions[n],Length[msi[#]]==k&]],{n,0,15},{k,0,Floor[(Sqrt[1+8n]-1)/2]}]
%Y A362614 Row sums are A000041.
%Y A362614 Row lengths are A002024.
%Y A362614 Removing columns 0 and 1 and taking sums gives A362607, ranks A362605.
%Y A362614 Column k = 1 is A362608, ranks A356862.
%Y A362614 This statistic (mode-count) is ranked by A362611.
%Y A362614 For co-modes we have A362615, ranked by A362613.
%Y A362614 A008284 counts partitions by length.
%Y A362614 A096144 counts partitions by number of minima, A026794 by maxima.
%Y A362614 A238342 counts compositions by number of minima, A238341 by maxima.
%Y A362614 A275870 counts collapsible partitions.
%Y A362614 Cf. A002865, A003056, A098859, A240219, A359893, A360071, A362609, A362610, A362612, A372542.
%K A362614 nonn,look,tabf
%O A362614 0,5
%A A362614 _Gus Wiseman_, May 04 2023