This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362614 #20 May 05 2024 16:42:18 %S A362614 1,0,1,0,2,0,2,1,0,4,1,0,5,2,0,7,3,1,0,11,3,1,0,16,4,2,0,21,6,3,0,29, %T A362614 8,4,1,0,43,7,5,1,0,54,13,8,2,0,78,12,8,3,0,102,17,11,5,0,131,26,12,6, %U A362614 1,0,175,29,17,9,1,0,233,33,18,11,2,0,295,47,25 %N A362614 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k modes. %C A362614 A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}. %H A362614 Alois P. Heinz, <a href="/A362614/b362614.txt">Rows n = 0..800, flattened</a> %F A362614 Sum_{k=0..A003056(n)} k * T(n,k) = A372542. - _Alois P. Heinz_, May 05 2024 %e A362614 Triangle begins: %e A362614 1 %e A362614 0 1 %e A362614 0 2 %e A362614 0 2 1 %e A362614 0 4 1 %e A362614 0 5 2 %e A362614 0 7 3 1 %e A362614 0 11 3 1 %e A362614 0 16 4 2 %e A362614 0 21 6 3 %e A362614 0 29 8 4 1 %e A362614 0 43 7 5 1 %e A362614 0 54 13 8 2 %e A362614 0 78 12 8 3 %e A362614 0 102 17 11 5 %e A362614 0 131 26 12 6 1 %e A362614 0 175 29 17 9 1 %e A362614 Row n = 8 counts the following partitions: %e A362614 (8) (53) (431) %e A362614 (44) (62) (521) %e A362614 (332) (71) %e A362614 (422) (3311) %e A362614 (611) %e A362614 (2222) %e A362614 (3221) %e A362614 (4211) %e A362614 (5111) %e A362614 (22211) %e A362614 (32111) %e A362614 (41111) %e A362614 (221111) %e A362614 (311111) %e A362614 (2111111) %e A362614 (11111111) %t A362614 msi[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&]; %t A362614 Table[Length[Select[IntegerPartitions[n],Length[msi[#]]==k&]],{n,0,15},{k,0,Floor[(Sqrt[1+8n]-1)/2]}] %Y A362614 Row sums are A000041. %Y A362614 Row lengths are A002024. %Y A362614 Removing columns 0 and 1 and taking sums gives A362607, ranks A362605. %Y A362614 Column k = 1 is A362608, ranks A356862. %Y A362614 This statistic (mode-count) is ranked by A362611. %Y A362614 For co-modes we have A362615, ranked by A362613. %Y A362614 A008284 counts partitions by length. %Y A362614 A096144 counts partitions by number of minima, A026794 by maxima. %Y A362614 A238342 counts compositions by number of minima, A238341 by maxima. %Y A362614 A275870 counts collapsible partitions. %Y A362614 Cf. A002865, A003056, A098859, A240219, A359893, A360071, A362609, A362610, A362612, A372542. %K A362614 nonn,look,tabf %O A362614 0,5 %A A362614 _Gus Wiseman_, May 04 2023