cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362615 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k co-modes.

This page as a plain text file.
%I A362615 #15 May 07 2024 19:42:09
%S A362615 1,0,1,0,2,0,2,1,0,4,1,0,5,2,0,7,3,1,0,10,4,1,0,13,7,2,0,16,11,3,0,23,
%T A362615 14,4,1,0,30,19,6,1,0,35,29,11,2,0,50,34,14,3,0,61,46,23,5,0,73,69,27,
%U A362615 6,1,0,95,81,44,10,1,0,123,105,53,14,2
%N A362615 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k co-modes.
%C A362615 We define a co-mode in a multiset to be an element that appears at most as many times as each of the others. For example, the co-modes of {a,a,b,b,b,c,c} are {a,c}.
%H A362615 Alois P. Heinz, <a href="/A362615/b362615.txt">Rows n = 0..800, flattened</a>
%F A362615 Sum_{k=0..A003056(n)} k * T(n,k) = A372632(n). - _Alois P. Heinz_, May 07 2024
%e A362615 Triangle begins:
%e A362615    1
%e A362615    0   1
%e A362615    0   2
%e A362615    0   2   1
%e A362615    0   4   1
%e A362615    0   5   2
%e A362615    0   7   3   1
%e A362615    0  10   4   1
%e A362615    0  13   7   2
%e A362615    0  16  11   3
%e A362615    0  23  14   4   1
%e A362615    0  30  19   6   1
%e A362615    0  35  29  11   2
%e A362615    0  50  34  14   3
%e A362615    0  61  46  23   5
%e A362615    0  73  69  27   6   1
%e A362615    0  95  81  44  10   1
%e A362615 Row n = 8 counts the following partitions:
%e A362615   (8)         (53)     (431)
%e A362615   (44)        (62)     (521)
%e A362615   (332)       (71)
%e A362615   (422)       (3221)
%e A362615   (611)       (3311)
%e A362615   (2222)      (4211)
%e A362615   (5111)      (32111)
%e A362615   (22211)
%e A362615   (41111)
%e A362615   (221111)
%e A362615   (311111)
%e A362615   (2111111)
%e A362615   (11111111)
%t A362615 comsi[ms_]:=Select[Union[ms],Count[ms,#]<=Min@@Length/@Split[ms]&];
%t A362615 Table[Length[Select[IntegerPartitions[n],Length[comsi[#]]==k&]],{n,0,15},{k,0,Floor[(Sqrt[1+8n]-1)/2]}]
%Y A362615 Row sums are A000041.
%Y A362615 Row lengths are A002024.
%Y A362615 Removing columns 0 and 1 and taking sums gives A362609, ranks A362606.
%Y A362615 Column k = 1 is A362610, ranks A359178.
%Y A362615 This statistic (co-mode count) is ranked by A362613.
%Y A362615 For mode instead of co-mode we have A362614, ranked by A362611.
%Y A362615 A008284 counts partitions by length.
%Y A362615 A096144 counts partitions by number of minima, A026794 by maxima.
%Y A362615 A238342 counts compositions by number of minima, A238341 by maxima.
%Y A362615 A275870 counts collapsible partitions.
%Y A362615 Cf. A003056, A098859, A325347, A359893, A362607, A362608, A362612, A372632.
%K A362615 nonn,tabf
%O A362615 0,5
%A A362615 _Gus Wiseman_, May 04 2023