This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362615 #15 May 07 2024 19:42:09 %S A362615 1,0,1,0,2,0,2,1,0,4,1,0,5,2,0,7,3,1,0,10,4,1,0,13,7,2,0,16,11,3,0,23, %T A362615 14,4,1,0,30,19,6,1,0,35,29,11,2,0,50,34,14,3,0,61,46,23,5,0,73,69,27, %U A362615 6,1,0,95,81,44,10,1,0,123,105,53,14,2 %N A362615 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k co-modes. %C A362615 We define a co-mode in a multiset to be an element that appears at most as many times as each of the others. For example, the co-modes of {a,a,b,b,b,c,c} are {a,c}. %H A362615 Alois P. Heinz, <a href="/A362615/b362615.txt">Rows n = 0..800, flattened</a> %F A362615 Sum_{k=0..A003056(n)} k * T(n,k) = A372632(n). - _Alois P. Heinz_, May 07 2024 %e A362615 Triangle begins: %e A362615 1 %e A362615 0 1 %e A362615 0 2 %e A362615 0 2 1 %e A362615 0 4 1 %e A362615 0 5 2 %e A362615 0 7 3 1 %e A362615 0 10 4 1 %e A362615 0 13 7 2 %e A362615 0 16 11 3 %e A362615 0 23 14 4 1 %e A362615 0 30 19 6 1 %e A362615 0 35 29 11 2 %e A362615 0 50 34 14 3 %e A362615 0 61 46 23 5 %e A362615 0 73 69 27 6 1 %e A362615 0 95 81 44 10 1 %e A362615 Row n = 8 counts the following partitions: %e A362615 (8) (53) (431) %e A362615 (44) (62) (521) %e A362615 (332) (71) %e A362615 (422) (3221) %e A362615 (611) (3311) %e A362615 (2222) (4211) %e A362615 (5111) (32111) %e A362615 (22211) %e A362615 (41111) %e A362615 (221111) %e A362615 (311111) %e A362615 (2111111) %e A362615 (11111111) %t A362615 comsi[ms_]:=Select[Union[ms],Count[ms,#]<=Min@@Length/@Split[ms]&]; %t A362615 Table[Length[Select[IntegerPartitions[n],Length[comsi[#]]==k&]],{n,0,15},{k,0,Floor[(Sqrt[1+8n]-1)/2]}] %Y A362615 Row sums are A000041. %Y A362615 Row lengths are A002024. %Y A362615 Removing columns 0 and 1 and taking sums gives A362609, ranks A362606. %Y A362615 Column k = 1 is A362610, ranks A359178. %Y A362615 This statistic (co-mode count) is ranked by A362613. %Y A362615 For mode instead of co-mode we have A362614, ranked by A362611. %Y A362615 A008284 counts partitions by length. %Y A362615 A096144 counts partitions by number of minima, A026794 by maxima. %Y A362615 A238342 counts compositions by number of minima, A238341 by maxima. %Y A362615 A275870 counts collapsible partitions. %Y A362615 Cf. A003056, A098859, A325347, A359893, A362607, A362608, A362612, A372632. %K A362615 nonn,tabf %O A362615 0,5 %A A362615 _Gus Wiseman_, May 04 2023