A362616 Numbers in whose prime factorization the greatest factor is the unique mode.
2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 18, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 50, 53, 54, 59, 61, 64, 67, 71, 73, 75, 79, 81, 83, 89, 97, 98, 101, 103, 107, 108, 109, 113, 121, 125, 127, 128, 131, 137, 139, 147, 149, 150, 151, 157, 162, 163, 167
Offset: 1
Keywords
Examples
The factorization of 90 is 2*3*3*5, modes {3}, so 90 is missing. The factorization of 450 is 2*3*3*5*5, modes {3,5}, so 450 is missing. The factorization of 900 is 2*2*3*3*5*5, modes {2,3,5}, so 900 is missing. The factorization of 1500 is 2*2*3*5*5*5, modes {5}, so 1500 is present. The terms together with their prime indices begin: 2: {1} 27: {2,2,2} 67: {19} 3: {2} 29: {10} 71: {20} 4: {1,1} 31: {11} 73: {21} 5: {3} 32: {1,1,1,1,1} 75: {2,3,3} 7: {4} 37: {12} 79: {22} 8: {1,1,1} 41: {13} 81: {2,2,2,2} 9: {2,2} 43: {14} 83: {23} 11: {5} 47: {15} 89: {24} 13: {6} 49: {4,4} 97: {25} 16: {1,1,1,1} 50: {1,3,3} 98: {1,4,4} 17: {7} 53: {16} 101: {26} 18: {1,2,2} 54: {1,2,2,2} 103: {27} 19: {8} 59: {17} 107: {28} 23: {9} 61: {18} 108: {1,1,2,2,2} 25: {3,3} 64: {1,1,1,1,1,1} 109: {29}
Crossrefs
Programs
-
Mathematica
prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]]; Select[Range[100],Commonest[prifacs[#]]=={Max[prifacs[#]]}&]
Comments