This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362644 #9 May 02 2023 17:49:24 %S A362644 1,1,1,1,1,1,1,1,2,1,1,1,3,3,1,1,1,4,8,5,1,1,1,5,17,28,7,1,1,1,6,34, %T A362644 159,96,11,1,1,1,7,61,888,2655,495,15,1,1,1,8,105,4521,76854,88885, %U A362644 2919,22,1,1,1,9,170,20916,1882581,15719714,4255594,22024,30,1 %N A362644 Array read by antidiagonals: T(n,k) is the number of nonisomorphic multisets of permutations of an n-set with k permutations. %C A362644 Isomorphism is up to permutation of the elements of the n-set. Each permutation can be considered to be a set of disjoint directed cycles whose vertices cover the n-set. Permuting the elements of the n-set permutes each of the permutations in the multiset. %H A362644 Andrew Howroyd, <a href="/A362644/b362644.txt">Table of n, a(n) for n = 0..1325</a> (first 51 antidiagonals). %F A362644 T(0,k) = T(1,k) = 1. %e A362644 Array begins: %e A362644 ==================================================================== %e A362644 n/k| 0 1 2 3 4 5 6 ... %e A362644 ---+---------------------------------------------------------------- %e A362644 0 | 1 1 1 1 1 1 1 ... %e A362644 1 | 1 1 1 1 1 1 1 ... %e A362644 2 | 1 2 3 4 5 6 7 ... %e A362644 3 | 1 3 8 17 34 61 105 ... %e A362644 4 | 1 5 28 159 888 4521 20916 ... %e A362644 5 | 1 7 96 2655 76854 1882581 39122096 ... %e A362644 6 | 1 11 495 88885 15719714 2271328951 274390124129 ... %e A362644 7 | 1 15 2919 4255594 5341866647 5387750530872 4530149870111873 ... %e A362644 ... %o A362644 (PARI) %o A362644 B(n,k) = {n!*k^n} %o A362644 K(v)=my(S=Set(v)); prod(i=1, #S, my(k=S[i], c=#select(t->t==k, v)); B(c, k)) %o A362644 R(v, m)=concat(vector(#v, i, my(t=v[i], g=gcd(t, m)); vector(g, i, t/g))) %o A362644 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} %o A362644 T(n,k) = {if(n==0, 1, my(s=0); forpart(q=n, s += permcount(q) * polcoef(exp(sum(m=1, k, K(R(q,m))*x^m/m, O(x*x^k))), k)); s/n!)} %Y A362644 Columns k=0..3 are A000012, A000041, A362645, A362646. %Y A362644 Rows n=3 is A002626. %Y A362644 Main diagonal is A362647. %Y A362644 Cf. A362648. %K A362644 nonn,tabl %O A362644 0,9 %A A362644 _Andrew Howroyd_, May 01 2023