This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362648 #8 May 03 2023 10:52:00 %S A362648 1,1,1,1,1,1,1,1,2,1,1,1,3,2,1,1,1,4,4,3,1,1,1,5,7,10,3,1,1,1,6,11,29, %T A362648 13,4,1,1,1,7,16,74,63,27,4,1,1,1,8,23,173,315,258,36,5,1,1,1,9,31, %U A362648 383,1532,3039,759,69,5,1,1,1,10,41,790,7093,38800,28550,3263,92,6,1 %N A362648 Array read by antidiagonals: T(n,k) is the number of nonisomorphic multisets of involutions on an n-set with k involutions. %C A362648 Isomorphism is up to permutation of the elements of the n-set. %H A362648 Andrew Howroyd, <a href="/A362648/b362648.txt">Table of n, a(n) for n = 0..1325</a> (first 51 antidiagonals). %e A362648 Array begins: %e A362648 ============================================================ %e A362648 n/k| 0 1 2 3 4 5 6 7 ... %e A362648 ---+-------------------------------------------------------- %e A362648 0 | 1 1 1 1 1 1 1 1 ... %e A362648 1 | 1 1 1 1 1 1 1 1 ... %e A362648 2 | 1 2 3 4 5 6 7 8 ... %e A362648 3 | 1 2 4 7 11 16 23 31 ... %e A362648 4 | 1 3 10 29 74 173 383 790 ... %e A362648 5 | 1 3 13 63 315 1532 7093 30499 ... %e A362648 6 | 1 4 27 258 3039 38800 478902 5414462 ... %e A362648 7 | 1 4 36 759 28550 1203468 46259693 1561933881 ... %e A362648 8 | 1 5 69 3263 392641 55494682 7010194951 768995611810 ... %e A362648 ... %o A362648 (PARI) %o A362648 B(c,k)=sum(j=0, c\2, if(k%2, 1, 2^(c-2*j))*k^j*binomial(c, 2*j)*(2*j)!/(2^j*j!)) %o A362648 K(v)=my(S=Set(v)); prod(i=1, #S, my(k=S[i], c=#select(t->t==k, v)); B(c, k)) %o A362648 R(v, m)=concat(vector(#v, i, my(t=v[i], g=gcd(t, m)); vector(g, i, t/g))) %o A362648 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} %o A362648 T(n,k) = {if(n==0, 1, my(s=0); forpart(q=n, s+=permcount(q)*polcoef(exp(sum(m=1, k, K(R(q,m))*x^m/m, O(x*x^k))), k)); s/n!)} %Y A362648 Columns k=0..3 are A000012, A004526, A362649, A362650. %Y A362648 Main diagonal is A362651. %Y A362648 Cf. A000085 (involutions), A362644, A362759. %K A362648 nonn,tabl %O A362648 0,9 %A A362648 _Andrew Howroyd_, May 01 2023