cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362653 E.g.f. satisfies A(x) = exp( x * exp(x^2) * A(x)^2 ).

This page as a plain text file.
%I A362653 #13 Feb 16 2025 08:34:05
%S A362653 1,1,5,55,849,17641,462373,14651295,545025281,23291218801,
%T A362653 1124589371301,60553038168679,3597677815336465,233810179507710105,
%U A362653 16499939198003013509,1256544674435523638671,102713141497515307408257,8970278754666722087785825
%N A362653 E.g.f. satisfies A(x) = exp( x * exp(x^2) * A(x)^2 ).
%H A362653 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A362653 E.g.f.: exp( -LambertW(-2*x * exp(x^2))/2 ).
%F A362653 a(n) = n! * Sum_{k=0..floor(n/2)} (n-2*k)^k * (2*n-4*k+1)^(n-2*k-1) / (k! * (n-2*k)!).
%o A362653 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-2*x*exp(x^2))/2)))
%Y A362653 Cf. A360547, A362654, A362673.
%K A362653 nonn
%O A362653 0,3
%A A362653 _Seiichi Manyama_, Apr 28 2023