cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362667 Infinitary sparsely totient numbers: numbers k such that m > k implies iphi(m) > iphi(k), where iphi is the infinitary totient function A091732.

This page as a plain text file.
%I A362667 #8 Apr 29 2023 07:33:49
%S A362667 2,6,8,10,24,30,42,54,56,66,120,168,216,264,270,312,330,384,408,456,
%T A362667 480,510,552,840,1080,1320,1560,1920,2040,2280,2376,2760,3000,3192,
%U A362667 3480,3720,3864,4440,4920,5160,5208,5640,7560,9240,10920,11880,13440,14280,15960
%N A362667 Infinitary sparsely totient numbers: numbers k such that m > k implies iphi(m) > iphi(k), where iphi is the infinitary totient function A091732.
%H A362667 Amiram Eldar, <a href="/A362667/b362667.txt">Table of n, a(n) for n = 1..300</a>
%t A362667 s[n_] := If[(inv = invIPhi[n]) == {}, 0, Max[inv]]; seq[kmax_] := Module[{v = {}, s1, sm = 0}, Do[s1 = s[k]; If[s1 > sm, sm = s1; AppendTo[v, s1]], {k, 1, kmax}]; v]; seq[3000] (* using the function invIPhi from A362484 *)
%Y A362667 The infinitary version of A036913.
%Y A362667 Record values of A362666.
%Y A362667 Cf. A091732, A362484, A362668.
%K A362667 nonn
%O A362667 1,1
%A A362667 _Amiram Eldar_, Apr 29 2023