cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362669 Integer inradii for which there exists an isosceles triangle with integer sides (a, b, b) where a < b.

This page as a plain text file.
%I A362669 #31 Feb 16 2025 08:34:05
%S A362669 10,20,21,24,30,36,40,42,48,50,55,60,63,70,72,78,80,84,90,96,100,105,
%T A362669 108,110,112,120,126,130,136,140,144,147,150,156,160,165,168,170,171,
%U A362669 180,189,190,192,195,200,210,216,220,224,230,231,234,240,250,252,253,260,264,270,272,273,275
%N A362669 Integer inradii for which there exists an isosceles triangle with integer sides (a, b, b) where a < b.
%C A362669 The inradius for isosceles triangle (a, b, b) is r = (a/2)*sqrt((2*b-a)/(2*b+a)).
%C A362669 If m is a term, so is k*m with k > 1; hence, A008592 \ {0} is a subsequence.
%H A362669 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Incircle.html">Incircle</a>.
%H A362669 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IsoscelesTriangle.html">Isosceles Triangle</a>.
%e A362669 The smallest inradius, r = 10, corresponds to isosceles triangle (30, 39, 39).
%e A362669 The third inradius, r = 21, corresponds to isosceles triangle (56, 100, 100).
%e A362669 r = 60 is the first inradius for which there exist two such isosceles triangles: (168, 259, 259) and (180, 234, 234).
%t A362669 Select[Range[300], Length @ Reduce[#^2 == a^2*(2*b - a)/(4*(2*b + a)) && 0 < a < b, {a, b}, Integers] > 0 &] (* _Amiram Eldar_, May 05 2023 *)
%Y A362669 Cf. A008592, A070204, A120062, A120570, A362670 (similar but with (a,a,c)).
%K A362669 nonn
%O A362669 1,1
%A A362669 _Bernard Schott_, Apr 29 2023