cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362685 Triangle of numbers read by rows, T(n, k) = (n*(n-1))*Stirling2(k, 2), for n >= 1 and 1 <= k <= n.

Original entry on oeis.org

0, 0, 2, 0, 6, 18, 0, 12, 36, 84, 0, 20, 60, 140, 300, 0, 30, 90, 210, 450, 930, 0, 42, 126, 294, 630, 1302, 2646, 0, 56, 168, 392, 840, 1736, 3528, 7112, 0, 72, 216, 504, 1080, 2232, 4536, 9144, 18360, 0, 90, 270, 630, 1350, 2790, 5670, 11430, 22950, 45990
Offset: 1

Views

Author

Keywords

Comments

T(n, k) is the number of ways to distribute k labeled items into n labeled boxes so that there are exactly 2 nonempty boxes.

Examples

			n\k   1      2       3      4      5      6      7
1:    0
2:    0      2
3:    0      6      18
4:    0     12      36     84
5:    0     20      60    140    300
6:    0     30      90    210    450    930
7:    0     42     126    294    630   1302   2646
  ...
T(4,2) = 12: {1}{2}{}{} (12 ways).
T(4,3) = 36: {12}{3}{}{} (36 ways).
T(4,4) = 84: {123}{4}{}{} (84 ways).
		

Crossrefs

Cf. A002024 (case L=1), A068605 (right diagonal).

Programs

  • Maple
    L := 2: T := (n, k) -> pochhammer(-n, L)*Stirling2(k, L)*((-1)^L):
    seq(seq(T(n, k), k = 1..n), n = 1..10);
  • Python
    from math import isqrt, comb
    from sympy.functions.combinatorial.numbers import stirling
    def A362685(n): return (a:=(m:=isqrt(k:=n<<1))+(k>m*(m+1)))*(a-1)*stirling(n-comb(a,2),2) # Chai Wah Wu, Jun 20 2025

Formula

T(n, k) = (n!/(n - L)!) * Stirling2(k, L) with L = 2, T(1, 1) = 0.