cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362703 Expansion of e.g.f. 1/(1 + LambertW(-x^3 * exp(x))).

This page as a plain text file.
%I A362703 #20 Feb 16 2025 08:34:05
%S A362703 1,0,0,6,24,60,1560,20370,161616,2601144,53827920,829605150,
%T A362703 14894289960,360575394036,8234733389064,188800085076330,
%U A362703 5145737430116640,148419618327231600,4278452209330445856,134018446273097264694,4529883358179857555640
%N A362703 Expansion of e.g.f. 1/(1 + LambertW(-x^3 * exp(x))).
%H A362703 Seiichi Manyama, <a href="/A362703/b362703.txt">Table of n, a(n) for n = 0..414</a>
%H A362703 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A362703 a(n) = n! * Sum_{k=0..floor(n/3)} k^(n-2*k) / (k! * (n-3*k)!).
%o A362703 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+lambertw(-x^3*exp(x)))))
%Y A362703 Cf. A072034, A362702.
%Y A362703 Cf. A292889, A362348, A362699.
%K A362703 nonn,easy
%O A362703 0,4
%A A362703 _Seiichi Manyama_, Apr 30 2023