This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362711 #28 Oct 15 2023 09:27:03 %S A362711 1,1,17,1177,210249,76961257,50203153993,53127675356625, %T A362711 85252003916011889,197131843368693693937,631233222450168374457057 %N A362711 a(n) is the hafnian of the 2n X 2n symmetric matrix defined by M[i, j] = min(i, j)*(2*n + 1) - i*j. %C A362711 M(n-1)/n is the inverse of the Cartan matrix for SU(n): the special unitary group of degree n. %C A362711 The elements sum of the matrix M(n) is A002415(n+1). %C A362711 The antidiagonal sum of the matrix M(n) is A005993(n-1). %C A362711 The n-th row of A107985 gives the row or column sums of the matrix M(n+1). %D A362711 E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Am. Math. Soc. Translations, Series 2, Vol. 6, 1957. %H A362711 Chao Ju, <a href="https://arxiv.org/abs/2304.11830">Chern-Simons Theory, Ehrhart Polynomials, and Representation Theory</a>, arXiv:2304.11830 [math-ph], 2023. See p. 14. %H A362711 Stefano Spezia, <a href="/A362679/a362679.pdf">A determinantal formula for the number of trees on n labeled nodes</a> %H A362711 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hafnian">Hafnian</a> %H A362711 Wikipedia, <a href="https://en.wikipedia.org/wiki/Special_unitary_group">Special unitary group</a> %H A362711 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_matrix">Symmetric matrix</a> %F A362711 Conjecture: det(M(n)) = A000272(n+1). %F A362711 The conjecture is true (see proof in Links). - _Stefano Spezia_, May 24 2023 %e A362711 a(2) = 17: %e A362711 [4, 3, 2, 1] %e A362711 [3, 6, 4, 2] %e A362711 [2, 4, 6, 3] %e A362711 [1, 2, 3, 4] %t A362711 M[i_, j_, n_]:=Part[Part[Table[Min[r,c](n+1)-r c, {r, n}, {c, n}], i], j]; a[n_]:=Sum[Product[M[Part[PermutationList[s, 2n], 2i-1], Part[PermutationList[s, 2n], 2i], 2n], {i, n}], {s, SymmetricGroup[2n]//GroupElements}]/(n!*2^n); Array[a, 6, 0] %o A362711 (PARI) tm(n) = matrix(n, n, i, j, min(i, j)*(n + 1) - i*j); %o A362711 a(n) = my(m = tm(2*n), s=0); forperm([1..2*n], p, s += prod(j=1, n, m[p[2*j-1], p[2*j]]); ); s/(n!*2^n); \\ _Michel Marcus_, May 02 2023 %Y A362711 Cf. A000272, A000292 (trace), A002415, A003983, A003991, A005993, A106314 (antidiagonals), A107985, A362679 (permanent). %K A362711 nonn,hard,more %O A362711 0,3 %A A362711 _Stefano Spezia_, Apr 30 2023 %E A362711 a(6) from _Michel Marcus_, May 02 2023 %E A362711 a(7)-a(10) from _Pontus von Brömssen_, Oct 15 2023