cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362716 Sum of the bits of the "integer part" of the base-phi representation of n.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 3, 1, 2, 2, 3, 2, 3, 1, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 4, 1, 2, 2, 3, 2, 3, 2, 3, 3, 3, 4, 2, 3, 3, 4, 3, 4, 1, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 4, 2, 3, 3, 4, 3, 4, 2, 3, 3, 3, 4, 3, 4, 3, 4, 4, 4, 5, 1, 2, 2, 3, 2, 3, 2, 3, 3, 3
Offset: 0

Views

Author

Jeffrey Shallit, Apr 30 2023

Keywords

Comments

The phi-representation of n is the (essentially) unique way to write n = Sum_{j=L..R} b(j)*phi^j, where b(j) is in {0,1} and -oo < L <= 0 <= R, where phi = (1+sqrt(5))/2, subject to the condition that b(j)b(j+1) != 1. The "integer" part is the string of bits b(R)b(R-1)...b(1)b(0).

Examples

			For n = 20 we have n = phi^6 + phi^1 + phi^(-2) + phi^(-6), and the "integer part" has 2 terms, so a(20) = 2.
		

Crossrefs

Cf. A055778.

Formula

There is a linear representation of rank 19 for a(n).