cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362724 a(n) = [x^n] E(x)^n, where E(x) = exp( Sum_{k >= 1} A005258(k)*x^k/k ).

This page as a plain text file.
%I A362724 #9 May 11 2023 10:25:37
%S A362724 1,3,37,525,7925,123878,1980199,32150030,527984245,8747075100,
%T A362724 145917510662,2447835093498,41253740275559,697956867712705,
%U A362724 11847510103853090,201678623730755525,3441648250114203253,58859380176953941937,1008553120517397082420,17311102730697482426850
%N A362724 a(n) = [x^n] E(x)^n, where E(x) = exp( Sum_{k >= 1} A005258(k)*x^k/k ).
%C A362724 Compare with A362722.
%C A362724 It is known that the sequence of Apéry numbers A005258 satisfies the Gauss congruences A005258(n*p^r) == A005258(n*p^(r-1)) (mod p^r) for all primes p and positive integers n and r.
%C A362724 One consequence is that the power series expansion of E(x) = exp( Sum_{k >= 1} A005258(k)*x^k/k ) = 1 + 3*x + 14*x^2 + 82*x^3 + 551*x^4 + ... has integer coefficients (see, for example, Beukers, Proposition, p. 143), and therefore a(n) = [x^n] E(x)^n is an integer.
%C A362724 In fact, the Apéry numbers satisfy stronger congruences than the Gauss congruences known as supercongruences: A005258(n*p^r) == A005258(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and positive integers n and r (see Straub, Section 1).
%C A362724 We conjecture below that {a(n)} satisfies supercongruences similar to (but weaker than) the above supercongruences satisfied by the Apéry numbers.
%C A362724 More generally, we inductively define a family of sequences {a(i,n) : n >= 0}, i >= 0, by setting a(0,n) = A005258(n) and, for i >= 1, a(i,n) = [x^n] ( exp(Sum_{k >= 1} a(i-1,k)*x^k/k) )^n. In this notation the present sequence is {a(1,n)}.
%C A362724 We conjecture that the sequences {a(i,n) : n >= 0}, i >= 1, satisfy the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(2*r)) for all primes p >= 3, and positive integers n and r.
%H A362724 F. Beukers, <a href="https://doi.org/10.1016/0022-314X(85)90047-2">Some congruences for the Apery numbers</a>, Journal of Number Theory, Vol. 21, Issue 2, Oct. 1985, pp. 141-155. <a href="/A339710/a339710.pdf">local copy</a>
%H A362724 Armin Straub, <a href="http://dx.doi.org/10.2140/ant.2014.8.1985">Multivariate Apéry numbers and supercongruences of rational functions</a>, Algebra & Number Theory, Vol. 8, No. 8 (2014), pp. 1985-2008; <a href="https://arxiv.org/abs/1401.0854">arXiv preprint</a>, arXiv:1401.0854 [math.NT], 2014.
%F A362724 Conjecture: the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(2*r)) holds for all primes p >= 3 and positive integers n and r.
%p A362724 A005258 := proc(n) add(binomial(n,k)^2*binomial(n+k,k), k = 0..n) end proc:
%p A362724 E(n,x) := series(exp(n*add(A005258(k)*x^k/k, k = 1..20)), x, 21):
%p A362724 seq(coeftayl(E(n,x), x = 0, n), n = 0..20);
%Y A362724 Cf. A005258, A362722 - A362733.
%K A362724 nonn,easy
%O A362724 0,2
%A A362724 _Peter Bala_, May 02 2023