cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362737 E.g.f. satisfies A(x) = exp(x^3 + x / A(x)).

This page as a plain text file.
%I A362737 #15 Feb 16 2025 08:34:05
%S A362737 1,1,-1,10,-27,316,-3725,63666,-1177687,25196536,-607345209,
%T A362737 16391726110,-488872392371,15968546353332,-566886190710853,
%U A362737 21733419523383946,-894910999976666415,39390009619800983536,-1845602126785662907121,91714859182521808208694
%N A362737 E.g.f. satisfies A(x) = exp(x^3 + x / A(x)).
%H A362737 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A362737 E.g.f.: x / LambertW(x*exp(-x^3)) = exp( x^3 + LambertW(x*exp(-x^3)) ).
%F A362737 a(n) = n! * Sum_{k=0..floor(n/3)} (-n+3*k+1)^(n-2*k-1) / (k! * (n-3*k)!).
%o A362737 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x^3+lambertw(x*exp(-x^3)))))
%Y A362737 Cf. A362693, A362736.
%Y A362737 Cf. A362691.
%K A362737 sign
%O A362737 0,4
%A A362737 _Seiichi Manyama_, May 01 2023