This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362742 #28 Feb 16 2025 08:34:05 %S A362742 5,9,1,5,6,0,7,7,9,3,4,9,8,1,7,3,4,0,2,1,3,8,4,6,9,0,3,3,4,5,3,4,3,4, %T A362742 6,9,5,6,2,3,5,3,8,9,6,2,5,4,5,6,7,1,7,4,6,8,1,0,7,6,8,4,5,9,1,6,5,5, %U A362742 7,9,8,0,5,3,0,2,4,9,5,9,0,8,3,6,2,7,0,4,7,2,9,0,7,8,7,6,2,7,6,9,7,8,3,8,2,7 %N A362742 Decimal expansion of Sum_{k>=1} (-1)^(k+1)*floor(sqrt(k))/k. %C A362742 If the floor function is replaced by the fractional part function, then Sum_{k>=1} (-1)^(k+1)*frac(sqrt(k))/k = (A113024 - (this constant)) = 0.01333786407... %H A362742 Wolfgang Hintze and River Li, <a href="https://math.stackexchange.com/questions/3450405/closed-expression-for-sum-sum-k-1-infty-1k1-frac-left-lfloor-sqr">Closed expression for sum Sum_{k=1..oo} (-1)^(k+1)*floor(sqrt(k))/k</a>, Mathematics Stackexchange, 2019. %H A362742 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a>. %F A362742 Equals log(2) + Sum_{n>=1} (-1)^n*n*Sum_{i=1..n} 1/((n^2+2*i-1)*(n^2+2*i)) (Li, 2019). %F A362742 Equals Integral_{x=0..1} (1-theta_4(0,x))/(2*x*(x+1)), where theta_4(z, q) is the 4th Jacobi theta function (Hintze, 2019). %e A362742 0.591560779349817340213846903345... %p A362742 evalf(log(2) + Sum((-1)^n*n*Sum(1/((n^2 + 2*i - 1)*(n^2 + 2*i)), i = 1..n), n = 1..infinity), 200); # _Vaclav Kotesovec_, May 02 2023 %t A362742 RealDigits[NIntegrate[(1 - EllipticTheta[4, x])/(2*x*(x + 1)), {x, 0, 1}, WorkingPrecision -> 30]][[1]] %o A362742 (PARI) default(realprecision, 200); log(2) + sumalt(n=1, (-1)^n*n*sum(i=1, n, 1/((n^2 + 2*i - 1)*(n^2 + 2*i)) )) \\ _Vaclav Kotesovec_, May 02 2023 %Y A362742 Cf. A000196, A113024. %K A362742 nonn,cons %O A362742 0,1 %A A362742 _Amiram Eldar_, May 02 2023 %E A362742 More digits from _Vaclav Kotesovec_, May 02 2023