cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362745 Triangular array read by rows. T(n,k) is the number of ordered pairs of n-permutations with exactly k rise/falls or fall/rises, n >= 0, 0 <= k <= max{0,n-1}.

This page as a plain text file.
%I A362745 #24 Mar 27 2025 02:23:13
%S A362745 1,1,2,2,10,16,10,88,200,200,88,1216,3536,4896,3536,1216,24176,85872,
%T A362745 149152,149152,85872,24176,654424,2743728,5714472,7176352,5714472,
%U A362745 2743728,654424,23136128,111842432,270769536,407103104,407103104,270769536,111842432,23136128
%N A362745 Triangular array read by rows.  T(n,k) is the number of ordered pairs of n-permutations with exactly k rise/falls or fall/rises, n >= 0, 0 <= k <= max{0,n-1}.
%C A362745 Let ( (a_1,a_2,...,a_n), (b_1,b_2,...,b_n) ) be an ordered pair of n-permutations.  Then the pairs (a_i,a_(i+1)) and (b_i,b_(i+1)) are both rises, both falls, a rise and a fall, or a fall and a rise.  T(n,k) is the number of ordered pairs of n-permutations that have a total of k rise/falls and fall/rises.
%H A362745 Alois P. Heinz, <a href="/A362745/b362745.txt">Rows n = 0..70, flattened</a>
%H A362745 L. Carlitz, Richard Scoville, and Theresa Vaughan, <a href="http://projecteuclid.org/euclid.bams/1183535825">Enumeration of pairs of permutations and sequences</a>, Bull. Amer. Math. Soc. 80(5) (1974), 881-884.
%F A362745 Sum_{n>=0} Sum_{k=0..n-1} u^k*z^n/(n!)^2 = ((1 - u) A((1 - u) z))/(1 - u A((1 - u) z)) where A(z) = Sum_{n>=0} A060350*z^n/(n!)^2.  Theorem 4 in Carlitz, Scoville, Vaughan link.
%e A362745 Triangle begins:
%e A362745     1;
%e A362745     1;
%e A362745     2,    2;
%e A362745    10,   16,   10;
%e A362745    88,  200,  200,   88;
%e A362745  1216, 3536, 4896, 3536, 1216;
%e A362745  ...
%e A362745 In the ordered pair of permutations ( (1,2,3,5,4), (4,2,1,3,5) ) we have a rise/fall, rise/fall, rise/rise, fall/rise.  So this ordered pair is counted in T(5,3).
%p A362745 b:= proc(n, u, v) option remember; expand(`if`(n=0, 1,
%p A362745       add(add(b(n-1, u-j, v-i), i=1..v)+
%p A362745           add(b(n-1, u-j, v+i-1)*x, i=1..n-v), j=1..u)+
%p A362745       add(add(b(n-1, u+j-1, v-i)*x, i=1..v)+
%p A362745           add(b(n-1, u+j-1, v+i-1), i=1..n-v), j=1..n-u)))
%p A362745     end:
%p A362745 T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
%p A362745 seq(T(n), n=0..10);  # _Alois P. Heinz_, May 01 2023
%t A362745 nn = 8; A[z_] := Total[Select[Import["https://oeis.org/A060350/b060350.txt", "Table"],Length@# == 2 &][[All, 2]]*Table[z^n/n!^2, {n, 0, 250}]];B[n_] := n!^2; e[z_] := Sum[z^n/B[n], {n, 0, nn}]; Map[Select[#, # > 0 &] &,Table[B[n], {n, 0, nn}] CoefficientList[Series[((1 - u) A[(1 - u) z])/(1 - u A[(1 - u) z]), {z, 0, nn}], {z, u}]] // Flatten
%Y A362745 Cf. A060350 (column k=0), A001044 (row sums), A259465.
%K A362745 nonn,tabf
%O A362745 0,3
%A A362745 _Geoffrey Critzer_, May 01 2023