This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362757 #43 May 10 2023 10:41:38 %S A362757 1,2,3,5,7,10,15,22,33,48,72,103,153,221,326,477,705,1036,1526,2243, %T A362757 3310,4872,7179,10582,15620,23039,33995,50151,73999,109170,161092, %U A362757 237629,350590,517254,763167,1126070,1661607,2451715,3617809,5338044,7876246,11621318,17147409,25300982,37331656,55082911,81275003 %N A362757 The number of integers in the set f^n({0}), where f is a variant of the Collatz function that replaces any element x in the argument set with both x/2 and 3*x+1. %C A362757 a(n) is the number of integers in set A(n), where A(0) = {0} and A(n+1) = {x/2 : x in A(n)} union {3x+1 : x in A(n)}. %C A362757 Non-integer numbers do not have integer offsprings. Consequently, they can be dropped when calculating terms of the sequence. %C A362757 Apparently the limit of a(n)/a(n-1) is approximately equal to 1.47551 (see plot of a(n-1)/a(n) ~= 0.677732). An explanation of this limit would be desirable. - _Hugo Pfoertner_, May 06 2023 %H A362757 Markus Sigg, <a href="/A362757/b362757.txt">Table of n, a(n) for n = 0..70</a> %H A362757 Hugo Pfoertner, <a href="https://oeis.org/plot2a?name1=A362757&name2=A362757&tform1=untransformed&tform2=untransformed&shift=-1&radiop1=ratio&drawpoints=true">Plot of ratio a(n-1)/a(n)</a>, using Plot 2. %e A362757 a(3) = 5 is the number of integers in the set {0, 1/4, 1/2, 1, 2, 5/2, 4, 13}. %o A362757 (PARI) %o A362757 a362757(maxn) = { %o A362757 my(A = Set([0])); %o A362757 print1(1); %o A362757 for(n = 1, maxn, %o A362757 A = setunion([t >> 1 | t <- A, bitnegimply(1,t)], [3*t+1 | t <- A]); %o A362757 print1(",", #A); %o A362757 ); %o A362757 }; %Y A362757 Cf. A208127, A275544. %K A362757 nonn %O A362757 0,2 %A A362757 _Markus Sigg_, May 02 2023