This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362759 #10 May 03 2023 21:37:02 %S A362759 1,1,1,1,0,1,1,0,1,1,1,0,1,1,1,1,0,1,2,2,1,1,0,1,2,7,2,1,1,0,1,3,18, %T A362759 16,4,1,1,0,1,3,43,138,84,4,1,1,0,1,4,93,1559,4642,403,7,1,1,0,1,4, %U A362759 200,14337,295058,211600,3028,8,1,1,0,1,5,386,117053,15730237,98019999,13511246,25431,12,1 %N A362759 Array read by antidiagonals: T(n,k) is the number of nonisomorphic multisets of derangements of an n-set with k derangements. %C A362759 Isomorphism is up to permutation of the elements of the n-set. A derangement is a permutation without fixed points. Each derangement can be considered to be a set of disjoint directed cycles excluding singleton loops whose vertices cover the n-set. Permuting the elements of the n-set permutes each of the derangements in the multiset. %H A362759 Andrew Howroyd, <a href="/A362759/b362759.txt">Table of n, a(n) for n = 0..1325</a> (first 51 antidiagonals). %F A362759 T(0,k) = T(2,k) = 1. %e A362759 Array begins: %e A362759 =========================================================== %e A362759 n/k| 0 1 2 3 4 5 6 ... %e A362759 ---+------------------------------------------------------- %e A362759 0 | 1 1 1 1 1 1 1 ... %e A362759 1 | 1 0 0 0 0 0 0 ... %e A362759 2 | 1 1 1 1 1 1 1 ... %e A362759 3 | 1 1 2 2 3 3 4 ... %e A362759 4 | 1 2 7 18 43 93 200 ... %e A362759 5 | 1 2 16 138 1559 14337 117053 ... %e A362759 6 | 1 4 84 4642 295058 15730237 706921410 ... %e A362759 7 | 1 4 403 211600 98019999 36414994209 11282515303088 ... %e A362759 ... %o A362759 (PARI) \\ here B(n,k) gives A320032(n,k). %o A362759 B(n,k) = sum(j=0, n, (-1)^(n-j)*binomial(n,j)*k^j*j!) %o A362759 K(v)=my(S=Set(v)); prod(i=1, #S, my(k=S[i], c=#select(t->t==k, v)); B(c, k)) %o A362759 R(v, m)=concat(vector(#v, i, my(t=v[i], g=gcd(t, m)); vector(g, i, t/g))) %o A362759 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} %o A362759 T(n,k) = {if(n==0, 1, my(s=0); forpart(q=n, s += permcount(q) * polcoef(exp(sum(m=1, k, K(R(q,m))*x^m/m, O(x*x^k))), k)); s/n!)} %Y A362759 Columns k=0..3 are A000012, A002865, A362760, A362761. %Y A362759 Main diagonal is A362762. %Y A362759 Cf. A000166 (derangements), A320032, A362644, A362648. %K A362759 nonn,tabl %O A362759 0,19 %A A362759 _Andrew Howroyd_, May 02 2023