This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362763 #15 Apr 09 2025 11:22:09 %S A362763 1,1,1,0,1,1,0,0,2,1,0,0,1,3,1,0,0,0,5,5,1,0,0,0,6,23,7,1,0,0,0,5,116, %T A362763 89,11,1,0,0,0,3,521,2494,484,15,1,0,0,0,1,1931,69366,87984,2904,22,1, %U A362763 0,0,0,0,5906,1592714,15456557,4250015,22002,30,1 %N A362763 Array read by antidiagonals: T(n,k) is the number of nonisomorphic k-sets of permutations of an n-set. %C A362763 Isomorphism is up to permutation of the elements of the n-set. Each permutation can be considered to be a set of disjoint directed cycles whose vertices cover the n-set. Permuting the elements of the n-set permutes each of the permutations in the k-set. %H A362763 Andrew Howroyd, <a href="/A362763/b362763.txt">Table of n, a(n) for n = 0..1325</a> (first 51 antidiagonals). %H A362763 Aman Kushwaha and Raghavendra Tripathi, <a href="https://arxiv.org/abs/2503.09542">A note on Erdős matrices and Marcus-Ree inequality</a>, arXiv:2503.09542 [math.MG], 2025. See p. 12. %F A362763 T(n,k) = 0 for k > n!. %F A362763 T(n,k) = T(n, n!-k). %e A362763 Array begins: %e A362763 ==================================================================== %e A362763 n/k| 0 1 2 3 4 5 6 ... %e A362763 ---+---------------------------------------------------------------- %e A362763 0 | 1 1 0 0 0 0 0 ... %e A362763 1 | 1 1 0 0 0 0 0 ... %e A362763 2 | 1 2 1 0 0 0 0 ... %e A362763 3 | 1 3 5 6 5 3 1 ... %e A362763 4 | 1 5 23 116 521 1931 5906 ... %e A362763 5 | 1 7 89 2494 69366 1592714 30461471 ... %e A362763 6 | 1 11 484 87984 15456557 2209040882 263190866673 ... %e A362763 7 | 1 15 2904 4250015 5329123475 5366409944453 4503264576070573 ... %e A362763 ... %o A362763 (PARI) %o A362763 B(n,k) = {n!*k^n} %o A362763 K(v)=my(S=Set(v)); prod(i=1, #S, my(k=S[i], c=#select(t->t==k, v)); B(c, k)) %o A362763 R(v, m)=concat(vector(#v, i, my(t=v[i], g=gcd(t, m)); vector(g, i, t/g))) %o A362763 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} %o A362763 T(n,k) = {if(n==0, k<=1, my(s=0); forpart(q=n, s+=permcount(q) * polcoef(exp(sum(m=1, k, K(R(q,m))*(x^m-x^(2*m))/m, O(x*x^k))), k)); s/n!)} %Y A362763 Columns k=0..3 are A000012, A000041, A362764, A362765. %Y A362763 Row sums are A362766. %Y A362763 Cf. A362644. %K A362763 nonn,tabl %O A362763 0,9 %A A362763 _Andrew Howroyd_, May 03 2023