This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A362789 #7 May 04 2023 08:57:01 %S A362789 1,0,0,1,0,2,0,3,2,0,4,18,0,5,84,6,0,6,300,144,0,7,930,1500,24,0,8, %T A362789 2646,10800,1200,0,9,7112,63210,23400,120,0,10,18360,324576,294000, %U A362789 10800,0,11,45990,1524600,2857680,352800,720,0,12,112530,6717600,23496480,7056000,105840 %N A362789 Triangle read by rows. T(n, k) = FallingFactorial(n - k, k) * Stirling2(n - k, k), for n >= 0 and 0 <= k <= n//2, where '//' denotes integer division. %e A362789 Triangle T(n, k) starts: %e A362789 [0] 1; %e A362789 [1] 0; %e A362789 [2] 0, 1; %e A362789 [3] 0, 2; %e A362789 [4] 0, 3, 2; %e A362789 [5] 0, 4, 18; %e A362789 [6] 0, 5, 84, 6; %e A362789 [7] 0, 6, 300, 144; %e A362789 [8] 0, 7, 930, 1500, 24; %e A362789 [9] 0, 8, 2646, 10800, 1200; %p A362789 fallingFactorial := (x, n) -> (-1)^n * pochhammer(-x, n): %p A362789 T := (n, k) -> fallingFactorial(n - k, k) * Stirling2(n - k, k): %p A362789 seq(seq(T(n, k), k = 0..iquo(n,2)), n = 0..12); %o A362789 (SageMath) %o A362789 def A362789(n, k): %o A362789 return falling_factorial(n - k, k) * stirling_number2(n - k, k) %o A362789 for n in range(10): %o A362789 print([A362789(n, k) for k in range(n//2 + 1)]) %Y A362789 Cf. A362790 (row sums), A362788, A362769. %K A362789 nonn,tabf %O A362789 0,6 %A A362789 _Peter Luschny_, May 04 2023