A362792 Numbers k such that 3*k and 7*k share the same set of digits.
0, 45, 75, 423, 445, 450, 513, 750, 891, 1089, 1305, 2382, 2497, 4230, 4445, 4450, 4488, 4491, 4500, 4505, 4513, 4878, 5013, 5045, 5130, 5133, 5868, 7317, 7500, 7686, 8360, 8703, 8891, 8901, 8910, 8911, 8955, 8991, 9756, 9891, 10089, 10449, 10889, 10890, 10891
Offset: 1
Examples
k = 75 is a term because 3*k = 225 and 7*k = 525 share the same set of digits, namely {2,5}. k = 423 is a term because 3*k = 1269 and 7*k = 2961 share the same set of digits, namely {1,2,6,9}.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[0, 11000], Union[IntegerDigits[3*#]] == Union[IntegerDigits[7*#]] &] (* Amiram Eldar, May 18 2023 *)
-
PARI
isok(k) = Set(digits(3*k)) == Set(digits(7*k));
-
Python
def ok(n): return set(str(3*n)) == set(str(7*n)) print([k for k in range(11000) if ok(k)]) # Michael S. Branicky, May 04 2023
Comments