cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362794 E.g.f. satisfies A(x) = (1+x)^(A(x)^x).

This page as a plain text file.
%I A362794 #19 Feb 16 2025 08:34:05
%S A362794 1,1,0,6,0,170,-120,12446,-35336,1832400,-12172320,469680552,
%T A362794 -5524990416,189586178184,-3321122831208,111608536026360,
%U A362794 -2599887499382400,90253048158627072,-2595580675897337856,95720854442948910720,-3237436187047116892800
%N A362794 E.g.f. satisfies A(x) = (1+x)^(A(x)^x).
%H A362794 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A362794 E.g.f.: exp( -LambertW(-x * log(1+x)) / x ) = (1+x)^exp( -LambertW(-x * log(1+x)) ).
%F A362794 E.g.f.: Sum_{k>=0} (k*x + 1)^(k-1) * (log(1+x))^k / k!.
%o A362794 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace((1+x)^exp(-lambertw(-x*log(1+x)))))
%Y A362794 Cf. A033917, A362795.
%Y A362794 Cf. A362796, A362799.
%Y A362794 Cf. A349504, A349505.
%K A362794 sign
%O A362794 0,4
%A A362794 _Seiichi Manyama_, May 04 2023