cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362795 E.g.f. satisfies A(x) = (1+x)^(A(x)^(x^2)).

This page as a plain text file.
%I A362795 #15 Feb 16 2025 08:34:05
%S A362795 1,1,0,0,24,0,-60,7980,-12992,-23184,10320480,-54616320,160009344,
%T A362795 33740939232,-391545030240,3173349947040,211401523687680,
%U A362795 -4586955333880320,66611949275370240,2068372502060292864,-82278329345056212480,1885659676128917982720
%N A362795 E.g.f. satisfies A(x) = (1+x)^(A(x)^(x^2)).
%H A362795 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A362795 E.g.f.: exp( -LambertW(-x^2 * log(1+x)) / x^2 ) = (1+x)^exp( -LambertW(-x^2 * log(1+x)) ).
%F A362795 E.g.f.: Sum_{k>=0} (k*x^2 + 1)^(k-1) * (log(1+x))^k / k!.
%o A362795 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace((1+x)^exp(-lambertw(-x^2*log(1+x)))))
%Y A362795 Cf. A033917, A362794.
%Y A362795 Cf. A362798, A362800.
%K A362795 sign
%O A362795 0,5
%A A362795 _Seiichi Manyama_, May 04 2023