cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362796 E.g.f. satisfies A(x) = 1/(1-x)^(A(x)^x).

This page as a plain text file.
%I A362796 #15 Feb 16 2025 08:34:05
%S A362796 1,1,2,12,72,650,6480,80906,1121512,18069264,320204160,6348340152,
%T A362796 136915211664,3230148306216,82078412377416,2248247450065080,
%U A362796 65771634671679360,2052879248516927232,67955959831214467584,2381716543764159438336
%N A362796 E.g.f. satisfies A(x) = 1/(1-x)^(A(x)^x).
%H A362796 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A362796 E.g.f.: exp( -LambertW(x * log(1-x)) / x ) = 1/(1-x)^exp( -LambertW(x * log(1-x)) ).
%F A362796 E.g.f.: Sum_{k>=0} (k*x + 1)^(k-1) * (-log(1-x))^k / k!.
%o A362796 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-x)^exp(-lambertw(x*log(1-x)))))
%Y A362796 Cf. A052813, A362798.
%Y A362796 Cf. A362794, A362799.
%K A362796 nonn
%O A362796 0,3
%A A362796 _Seiichi Manyama_, May 04 2023