cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362798 E.g.f. satisfies A(x) = 1/(1-x)^(A(x)^(x^2)).

This page as a plain text file.
%I A362798 #16 Feb 16 2025 08:34:05
%S A362798 1,1,2,6,48,360,2820,31500,393568,5111568,78491520,1345893120,
%T A362798 24286008384,483716087712,10526811186528,241867328844960,
%U A362798 5957816820215040,157412355684364800,4380674530640290560,128826276098289179904,4010282529115722232320
%N A362798 E.g.f. satisfies A(x) = 1/(1-x)^(A(x)^(x^2)).
%H A362798 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A362798 E.g.f.: exp( -LambertW(x^2 * log(1-x)) / x^2 ) = 1/(1-x)^exp( -LambertW(x^2 * log(1-x)) ).
%F A362798 E.g.f.: Sum_{k>=0} (k*x^2 + 1)^(k-1) * (-log(1-x))^k / k!.
%o A362798 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x)^exp(-lambertw(x^2*log(1-x)))))
%Y A362798 Cf. A052813, A362796.
%Y A362798 Cf. A362795, A362800.
%K A362798 nonn
%O A362798 0,3
%A A362798 _Seiichi Manyama_, May 04 2023