cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362800 E.g.f. satisfies A(x) = exp( (exp(x) - 1) * A(x)^(x^2) ).

This page as a plain text file.
%I A362800 #17 Feb 16 2025 08:34:05
%S A362800 1,1,2,5,39,292,2063,21877,271372,3298155,47855035,805112970,
%T A362800 13843621861,261388560253,5529798475178,122059754102345,
%U A362800 2863956966387107,73150334575839340,1961833778207602123,55184622355007805281,1656027290812446938492
%N A362800 E.g.f. satisfies A(x) = exp( (exp(x) - 1) * A(x)^(x^2) ).
%H A362800 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A362800 E.g.f.: exp( -LambertW(-x^2 * (exp(x) - 1)) / x^2 ).
%F A362800 E.g.f.: Sum_{k>=0} (k*x^2 + 1)^(k-1) * (exp(x) - 1)^k / k!.
%o A362800 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x^2*(exp(x)-1))/x^2)))
%Y A362800 Cf. A052880, A362799.
%Y A362800 Cf. A362795, A362798.
%Y A362800 Cf. A000110, A362571.
%K A362800 nonn
%O A362800 0,3
%A A362800 _Seiichi Manyama_, May 04 2023