A362804 Numbers k such that the set of divisors {d | k, BitOr(k, d) = k} has an integer harmonic mean.
1, 2, 4, 6, 8, 12, 16, 24, 28, 30, 32, 45, 48, 56, 60, 64, 90, 96, 112, 120, 128, 180, 192, 224, 240, 256, 360, 384, 448, 480, 496, 512, 720, 768, 896, 960, 992, 1024, 1440, 1536, 1792, 1920, 1984, 2048, 2880, 3072, 3584, 3840, 3968, 4096, 5760, 6144, 7168, 7680
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..406
Crossrefs
Programs
-
Mathematica
q[n_] := IntegerQ[HarmonicMean[Select[Divisors[n], BitAnd[n, #] == # &]]]; Select[Range[10^4], q]
-
PARI
div(n) = select(x->(bitor(x, n) == n), divisors(n)); is(n) = {my(d = div(n)); denominator(#d/sum(i = 1, #d, 1/d[i])) == 1;}
Comments