cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362815 Start with 2. Then, numbers are added to the sequence if they do not form any arithmetic progression p with numbers in the sequence such that length(p) > min(p).

Original entry on oeis.org

2, 3, 5, 6, 7, 11, 13, 14, 16, 17, 18, 19, 21, 22, 23, 25, 28, 29, 31, 37, 38, 39, 41, 43, 46, 47, 50, 51, 52, 53, 55, 58, 59, 61, 62, 64, 66, 67, 68, 70, 71, 73, 75, 77, 79, 82, 83, 85, 86, 88, 89, 93, 94, 96, 97, 99, 101, 103, 106, 107, 109, 110, 113, 115
Offset: 1

Views

Author

Samuel Harkness, May 04 2023

Keywords

Comments

All primes are in the sequence.
Does the density of numbers in this sequence approach 0.5?

Examples

			2 is in the sequence.
For 3: the only arithmetic progression made with 3 is p = {2,3}. Here, length(p) = min(p), so 3 is a term.
For 4: p = {2,3,4} can be made. Here, length(p) > min(p), so 4 is not a term.
For 5: the only arithmetic progressions made with 5 are p = {2,5} and p = {3,5}. Neither of these have length(p) > min(p), so 5 is a term.
...
For 9: p = {3,5,7,9} can be made. Here, length(p) > min(p), so 9 is not a term.
		

Crossrefs

Programs

  • MATLAB
    See Links section.